Solution of the steady thin film flow of non-Newtonian fluid on vertical cylinder using Adomian Decomposition Method

被引:18
作者
Alam, M. K. [1 ]
Rahim, M. T. [1 ]
Avital, E. J. [2 ]
Islam, S. [3 ]
Siddiqui, A. M. [4 ]
Williams, J. J. R. [2 ]
机构
[1] Natl Univ Comp & Emerging Sci, Peshawar, Pakistan
[2] Queen Mary Univ London, Sch Engn & Mat Sci, London, England
[3] Abdul Wali Khan Univ, Dept Math, Mardan, Pakistan
[4] Penn State Univ, New York, PA 17403 USA
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2013年 / 350卷 / 04期
关键词
JOHNSON-SEGALMAN FLUID; HOMOTOPY PERTURBATION METHOD; RELIABLE TREATMENT;
D O I
10.1016/j.jfranklin.2013.01.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the steady thin film flow on the outer surface of long vertical cylinder of non-Newtonian Johnson Segalman fluid for lifting and drainage problems have been investigated. Adomian decomposition (ADM) and numerical methods are applied for the solutions of the non-linear problems. Expressions for the velocity field and average velocity have been derived for both the problems, respectively. For Weissenberg number W-e = 0, we retrieve Newtonian cases for both the problems. We also obtain the results for Maxwell fluid by taking slip parameter a=1. We also discussed the effect of the Stokes number S-t, the Weissenberg number W-e, the ratio of viscosities phi and the slip parameter a on the fluid flows. (C) 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:818 / 839
页数:22
相关论文
共 25 条
[1]   Improved Adomian decomposition method (solving nonlinear non-homogenous initial value problem) [J].
Abassy, Tamer A. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (06) :1035-1051
[2]  
Adomian G., 1994, Fundamental Theories of Physics
[3]  
Adomian G, 1992, MATH COMPUT MODEL, V13, P287
[4]   Thin-film flow of magnetohydrodynamic (MHD) Johnson-Segalman fluid on vertical surfaces using the Adomian decomposition method [J].
Alam, M. K. ;
Siddiqui, A. M. ;
Rahim, M. T. ;
Islam, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (08) :3956-3974
[5]  
Avital E.J., 2013, JOURNAL OF COMPUTATI, V2
[6]  
Cherruault Y., 1993, MATH COMPUT MODEL, V18, P10
[7]  
He J.H., 2000, INT J NONLIN MECH, V35, P527
[8]   Comparison of homotopy perturbation method and homotopy analysis method [J].
He, JH .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 156 (02) :527-539
[9]   Homotopy perturbation method: a new nonlinear analytical technique [J].
He, JH .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 135 (01) :73-79
[10]   Homotopy perturbation technique [J].
He, JH .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 178 (3-4) :257-262