Local Calabi-Yau manifolds of type (A)over-tilde via SYZ mirror symmetry

被引:19
作者
Kanazawa, Atsushi [1 ]
Lau, Siu-Cheong [2 ]
机构
[1] Kyoto Univ, Dept Math, Sakyo Ku, Kyoto 6068502, Japan
[2] Boston Univ, Dept Math & Stat, 111 Cummington Mall, Boston, MA 02215 USA
关键词
Calabi-Yau manifolds; SYZ mirror symmetry; Riemann theta functions; Toric geometry; open Gromov-Witten invariants; Abelian varieties; ABELIAN-VARIETIES; GEOMETRY; INVARIANTS; FIBRATIONS; SURFACES; CURVES; MAPS;
D O I
10.1016/j.geomphys.2018.12.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We carry out the SYZ program for the local Calabi-Yau manifolds of type (A) over tilde by developing an equivariant SYZ theory for the toric Calabi-Yau manifolds of infinite-type. Mirror geometry is shown to be expressed in terms of the Riemann theta functions and generating functions of open Gromov-Witten invariants, whose modular properties are found and studied in this article. Our work also provides a mathematical justification for a mirror symmetry assertion of the physicists Hollowood-lqbal-Vafa (Hollowood et al., 2008). (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:103 / 138
页数:36
相关论文
共 53 条
[1]   LAGRANGIAN FIBRATIONS ON BLOWUPS OF TORIC VARIETIES AND MIRROR SYMMETRY FOR HYPERSURFACES [J].
Abouzaid, Mohammed ;
Auroux, Denis ;
Katzarkov, Ludmil .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2016, 123 (01) :199-282
[2]   Kahler geometry of toric varieties and extremal metrics [J].
Abreu, M .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1998, 9 (06) :641-651
[3]   Compactified jacobians and Torelli map [J].
Alexeev, V .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2004, 40 (04) :1241-1265
[4]  
Ash A, 1975, LIE GROUPS HIST FRON, VIV
[5]  
Aspinwall P. S., 2009, Clay Math. Monogr., V4
[6]  
Auroux Denis, 2007, J. Gokova Geom. Topol. GGT, V1, P51
[7]  
BELLMAN R, 1961, BRIEF INTRO THETA FU
[8]   The enumerative geometry of K3 surfaces and modular forms [J].
Bryan, J ;
Leung, NC .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (02) :371-410
[9]  
Chan K, 2016, J DIFFER GEOM, V103, P207
[10]   Enumerative meaning of mirror maps for toric Calabi-Yau manifolds [J].
Chan, Kwokwai ;
Lau, Siu-Cheong ;
Tseng, Hsian-Hua .
ADVANCES IN MATHEMATICS, 2013, 244 :605-625