Distribution of Scattering Matrix Elements in Quantum Chaotic Scattering

被引:45
|
作者
Kumar, S. [1 ]
Nock, A. [1 ]
Sommers, H. -J. [1 ]
Guhr, T. [1 ]
Dietz, B. [2 ]
Miski-Oglu, M. [2 ]
Richter, A. [2 ]
Schaefer, F. [3 ]
机构
[1] Univ Duisburg Essen, Fac Phys, D-47048 Duisburg, Germany
[2] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany
[3] Univ Florence, LENS, I-50019 Sesto Fiorentino, Italy
关键词
ERICSON FLUCTUATIONS; STATISTICAL-THEORY; S-MATRIX; SYSTEMS; PHYSICS; SUPERSYMMETRY; SYMMETRY;
D O I
10.1103/PhysRevLett.111.030403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Scattering is an important phenomenon which is observed in systems ranging from the micro- to macroscale. In the context of nuclear reaction theory, the Heidelberg approach was proposed and later demonstrated to be applicable to many chaotic scattering systems. To model the universal properties, stochasticity is introduced to the scattering matrix on the level of the Hamiltonian by using random matrices. A long-standing problem was the computation of the distribution of the off-diagonal scattering-matrix elements. We report here an exact solution to this problem and present analytical results for systems with preserved and with violated time-reversal invariance. Our derivation is based on a new variant of the supersymmetry method. We also validate our results with scattering data obtained from experiments with microwave billiards.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Semiclassical Limit of Resonance States in Chaotic Scattering
    Ketzmerick, Roland
    Lorenz, Florian
    Schmidt, Jan Robert
    PHYSICAL REVIEW LETTERS, 2025, 134 (02)
  • [22] Exact Results for Chaotic Scattering and Experimental Validation
    Guhr, Thomas
    FIFTH CONFERENCE ON NUCLEI AND MESOSCOPIC PHYSICS, 2017, 1912
  • [23] Cross-section fluctuations in chaotic scattering
    Dietz, B.
    Harney, H. L.
    Richter, A.
    Schaefer, F.
    Weidenmueller, H. A.
    PHYSICS LETTERS B, 2010, 685 (4-5) : 263 - 269
  • [24] Emergence of Chaotic Scattering in Ultracold Er and Dy
    Maier, T.
    Kadau, H.
    Schmitt, M.
    Wenzel, M.
    Ferrier-Barbut, I.
    Pfau, T.
    Frisch, A.
    Baier, S.
    Aikawa, K.
    Chomaz, L.
    Mark, M. J.
    Ferlaino, F.
    Makrides, C.
    Tiesinga, E.
    Petrov, A.
    Kotochigova, S.
    PHYSICAL REVIEW X, 2015, 5 (04):
  • [25] Supersymmetric quantum mechanics of scattering
    Shimbori, T
    Kobayashi, T
    PHYSICS LETTERS B, 2001, 501 (3-4) : 245 - 248
  • [26] Quantum coherence and magnetic scattering
    Bauerle, Christopher
    Degiovanni, Pascal
    Saminadayar, Laurent
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2010, 7 (4-8) : 403 - 419
  • [27] Scattering processes in quantum optics
    Gough, John E.
    PHYSICAL REVIEW A, 2015, 91 (01):
  • [28] Ergodic decay laws in Newtonian and relativistic chaotic scattering
    Fernandez, Diego S.
    Lopez, Alvaro G.
    Seoane, Jesus M.
    Sanjuan, Miguel A. F.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 103
  • [29] Statistics of time delay and scattering correlation functions in chaotic systems. I. Random matrix theory
    Novaes, Marcel
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (06)
  • [30] Scattering theory and thermodynamics of quantum transport
    Gaspard, Pierre
    ANNALEN DER PHYSIK, 2015, 527 (9-10) : 663 - 683