On Multivalued Contractions in Cone Metric Spaces without Normality

被引:13
作者
Arshad, Muhammad [1 ]
Ahmad, Jamshaid [2 ]
机构
[1] Int Islamic Univ, Dept Math, Islamabad 44000, Pakistan
[2] COMSATS Inst Informat Technol, Dept Math, Islamabad 44000, Pakistan
关键词
SET-VALUED CONTRACTIONS; FIXED-POINTS;
D O I
10.1155/2013/481601
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Wardowski (2011) in this paper for a normal cone metric space (X,d) and for the family A of subsets of X established a new cone metric H : A x A -> E and obtained fixed point of set-valued contraction of Nadler type. Further, it is noticed in the work of Jankovic et al., 2011 that the fixed-point problem in the setting of cone metric spaces is appropriate only in the case when the underlying cone is nonnormal. In the present paper we improve Wardowski's result by proving the same without the assumption of normality on cones.
引用
收藏
页数:3
相关论文
共 21 条
[1]  
Abdeljawad T, 2011, J COMPUT ANAL APPL, V13, P622
[2]   On a Theorem of Khan in a Generalized Metric Space [J].
Ahmad, Jamshaid ;
Arshad, Muhammad ;
Vetro, Calogero .
INTERNATIONAL JOURNAL OF ANALYSIS, 2013,
[3]  
ARSHAD M, 2013, JOURNAL OF ANALYSIS
[4]   Some Common Fixed Point Results in Cone Metric Spaces [J].
Arshad, Muhammad ;
Azam, Akbar ;
Vetro, Pasquale .
FIXED POINT THEORY AND APPLICATIONS, 2009,
[5]   Some Fixed and Periodic Points in Abstract Metric Spaces [J].
Bin Ahmad, Abd Ghafur ;
Fadail, Zaid Mohammed ;
Abbas, Mujahid ;
Kadelburg, Zoran ;
Radenovic, Stojan .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[6]   Fixed point theorems for multivalued contractive mappings and multivalued Caristi type mappings in cone metric spaces [J].
Cho, Seong-Hoon ;
Bae, Jong-Sook ;
Na, Kwang-Soo .
FIXED POINT THEORY AND APPLICATIONS, 2012,
[7]   Fixed point theorems for multivalued maps in cone metric spaces [J].
Cho, Seong-Hoon ;
Bae, Jong-Sook .
FIXED POINT THEORY AND APPLICATIONS, 2011, :1-7
[8]   Set-valued fixed-point theorems for generalized contractive mappings without the Hausdorff metric [J].
Cho, Yeol Je ;
Hirunworakit, Soawapak ;
Petrot, Narin .
APPLIED MATHEMATICS LETTERS, 2011, 24 (11) :1959-1967
[9]  
Gajic L, 2012, FUNCT ANAL APPL+, V46, P62, DOI [10.1007/s10688-012-0008-2, 10.4213/faa3057]
[10]   Cone metric spaces and fixed point theorems of contractive mappings [J].
Huang Long-Guang ;
Zhang Xian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (02) :1468-1476