Nuclear reaction measurements on tissue-equivalent materials and GEANT4 Monte Carlo simulations for hadrontherapy

被引:10
作者
De Napoli, M. [1 ]
Romano, F. [2 ]
D'Urso, D. [2 ]
Licciardello, T. [2 ]
Agodi, C. [2 ]
Candiano, G. [2 ]
Cappuzzello, F. [2 ,3 ]
Cirrone, G. A. P. [2 ]
Cuttone, G. [2 ]
Musumarra, A. [2 ,3 ]
Pandola, L. [2 ,4 ]
Scuderi, V. [2 ,5 ]
机构
[1] INFN, Sez Catania, I-95123 Catania, Italy
[2] INFN, Lab Nazl Sud, I-95123 Catania, Italy
[3] Univ Catania, Dipartimento Fis & Astron, I-95123 Catania, Italy
[4] INFN, Lab Nazl Gran Sasso, I-67100 Assergi, AQ, Italy
[5] ELI Beamlines Project, Inst Phys ASCR, Dept Expt Program ELI Beamlines, Prague, Czech Republic
关键词
Monte Carlo simulations; low and intermediate energy heavy-ion reactions; projectile and target fragmentation; dosimetry/exposure assessment; treatment strategy; Monte Carlo methods; simulation; FRAGMENTATION; MODELS; FLUKA; BEAM;
D O I
10.1088/0031-9155/59/24/7643
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
When a carbon beam interacts with human tissues, many secondary fragments are produced into the tumor region and the surrounding healthy tissues. Therefore, in hadrontherapy precise dose calculations require Monte Carlo tools equipped with complex nuclear reaction models. To get realistic predictions, however, simulation codes must be validated against experimental results; the wider the dataset is, the more the models are finely tuned. Since no fragmentation data for tissue-equivalent materials at Fermi energies are available in literature, we measured secondary fragments produced by the interaction of a 55.6 MeV u(-1) C-12 beam with thick muscle and cortical bone targets. Three reaction models used by the GEANT4 Monte Carlo code, the Binary Light Ions Cascade, the Quantum Molecular Dynamic and the Liege Intranuclear Cascade, have been benchmarked against the collected data. In this work we present the experimental results and we discuss the predictive power of the above mentioned models.
引用
收藏
页码:7643 / 7652
页数:10
相关论文
共 33 条
[21]  
Koi T, 2010, J SCI TECHNOL
[22]   Ion beam transport calculations and treatment plans in particle therapy [J].
Kraemer, M. ;
Durante, M. .
EUROPEAN PHYSICAL JOURNAL D, 2010, 60 (01) :195-202
[23]  
LANL, 2002, MCNPX US MAN VERS 2
[24]   Spatial fragment distribution from a therapeutic pencil-like carbon beam in water [J].
Matsufuji, N ;
Komori, M ;
Sasaki, H ;
Akiu, K ;
Ogawa, M ;
Fukumura, A ;
Urakabe, E ;
Inaniwa, T ;
Nishio, T ;
Kohno, T ;
Kanai, T .
PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (14) :3393-3403
[25]   Influence of fragment reaction of relativistic heavy charged particles on heavy-ion radiotherapy [J].
Matsufuji, N ;
Fukumura, A ;
Komori, M ;
Kanai, T ;
Kohno, T .
PHYSICS IN MEDICINE AND BIOLOGY, 2003, 48 (11) :1605-1623
[26]   ANALYSIS OF THE (N,XN') REACTIONS BY QUANTUM MOLECULAR-DYNAMICS PLUS STATISTICAL DECAY MODEL [J].
NIITA, K ;
CHIBA, S ;
MARUYAMA, T ;
MARUYAMA, T ;
TAKADA, H ;
FUKAHORI, T ;
NAKAHARA, Y ;
IWAMOTO, A .
PHYSICAL REVIEW C, 1995, 52 (05) :2620-2635
[27]  
Niita K., 2006, RADIAT MEAS, V41
[28]  
Quesada JM, 2011, PROG NUCL SCI TECHNO, V2, P936, DOI [DOI 10.15669/PNST.2.936, 10.15669/pnst.2.936]
[29]  
SCHARDT D, 1995, ADV SPACE RES, V17, P87
[30]   Present status and validation of HIBRAC [J].
Sihver, Lembit ;
Mancusi, Davide .
RADIATION MEASUREMENTS, 2009, 44 (01) :38-46