Fractional stochastic modelling illustration with modified Chua attractor

被引:20
作者
Atangana, Abdon [1 ]
Araz, Seda Igret [2 ]
机构
[1] Univ Free State, Fac Nat & Agr Sci, Inst Groundwater Studies, Bloemfontein, South Africa
[2] Siirt Univ, Dept Math, Fac Educ, Siirt, Turkey
关键词
D O I
10.1140/epjp/i2019-12565-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Very recently a new concept to capture more complexities in nature was suggested. The concept combines two important concepts of modeling including fractional differentiation and stochastic approach. In this work, we aim to investigate new chaotic attractors using the modified Chuan models and the new approach. We use the log-normal distribution to convert constant parameters into distribution. Then we use 3 different types of differential operators including Caputo, Caputo-Fabrizio and Atangana-Baleanu derivatives. We solve the new equations by using the newly introduced numerical scheme. Our numerical simulations display very new attractors.
引用
收藏
页数:23
相关论文
共 20 条
  • [11] New approach to a generalized fractional integral
    Katugampola, Udita N.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) : 860 - 865
  • [12] A new fractional model for tuberculosis with relapse via Atangana-Baleanu derivative
    Khan, Muhammad Altaf
    Ullah, Saif
    Farooq, Muhammad
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 116 : 227 - 238
  • [13] A fractional order pine wilt disease model with Caputo-Fabrizio derivative
    Khan, Muhammad Altaf
    Ullah, Saif
    Okosun, K. O.
    Shah, Kamil
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [14] Kober H., 1940, Q JMATH OXFORD, V11, P193, DOI [DOI 10.1093/QMATH/OS-11.1.193, 10.1093/qmath/os-11.1.193]
  • [15] Milne W. E., 1926, Amer. Math. Month., V33, P455
  • [16] Linking multiple relaxation, power-law attenuation, and fractional wave equations
    Nasholm, Sven Peter
    Holm, Sverre
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2011, 130 (05) : 3038 - 3045
  • [17] Ancient Babylonian astronomers calculated Jupiter's position from the area under a time-velocity graph
    Ossendrijver, Mathieu
    [J]. SCIENCE, 2016, 351 (6272) : 482 - 484
  • [18] Todorovic Petar, 2012, INTRO STOCHASTIC PRO, P19
  • [19] 2006, CHAOS SOLITON FRACT, V28, P923, DOI DOI 10.1016/J.CHAOS.2005.08.199
  • [20] 1949, MATH P CAMBRIDGE PHI, V45, P241