A hyperelliptic smoothness test, II

被引:12
作者
Lenstra, HW [1 ]
Pila, J
Pomerance, C
机构
[1] Univ Calif Berkeley, Dept Math 3840, Berkeley, CA 94720 USA
[2] Leiden Univ, Inst Math, NL-2300 RA Leiden, Netherlands
[3] Univ Melbourne, Dept Math, Parkville, Vic 3052, Australia
[4] Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
关键词
D O I
10.1112/plms/84.1.105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:105 / 146
页数:42
相关论文
共 24 条
[1]  
ADLEMAN L, 1992, LECT NOTES MATH, V1512
[2]  
Atiyah M. F., 1969, Introduction To Commutative Algebra, Addison-Wesley series in mathematics
[3]  
Cornell G., 1986, ARITHMETIC GEOMETRY
[4]   ORDINARY ABELIAN VARIETIES OVER FINITE FIELDS [J].
DELIGNE, P .
INVENTIONES MATHEMATICAE, 1969, 8 (03) :238-&
[5]  
Hardy G. H., 2008, INTRO THEORY NUMBERS, Vsixth
[6]   PRINCIPALLY POLARIZED ORDINARY ABELIAN-VARIETIES OVER FINITE-FIELDS [J].
HOWE, EW .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (07) :2361-2401
[7]  
Lang S., 1994, Grad. Texts in Math., V110
[8]   A HYPERELLIPTIC SMOOTHNESS TEST .1. [J].
LENSTRA, HW ;
PILA, J ;
POMERANCE, C .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 345 (1676) :397-408
[9]   FACTORING INTEGERS WITH ELLIPTIC-CURVES [J].
LENSTRA, HW .
ANNALS OF MATHEMATICS, 1987, 126 (03) :649-673
[10]   Explicit bounds for residues of Dedekind zeta functions, values of L-functions at s=1, and relative class numbers [J].
Louboutin, S .
JOURNAL OF NUMBER THEORY, 2000, 85 (02) :263-282