Thirteen limit cycles for a class of cubic Hamiltonian system with higher-order perturbed terms

被引:0
作者
Zhou, Hongxian [1 ]
Xu, Wei [1 ]
机构
[1] NW Polytech Univ, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Limit cycle; Bifurcation; Abelian integrals; Detection functions; Hamiltonian system;
D O I
10.1016/j.amc.2008.02.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The number and distribution of limit cycles of a cubic Hamiltonian system under higher-order perturbed terms is investigated. By using the bifurcation theory and the method of detection function, we obtain that there exist at least 13 limit cycles with the distribution C(7)(1) subset of 2[C(3)(2) subset of 2C(1)(2)] in the Hamiltonian system under the perturbed term of degree 5. Additionally, various distributions of limit cycles are given by numerical exploration. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:905 / 913
页数:9
相关论文
共 22 条
  • [1] Arnol'd V.I, 1977, FUNCT ANAL APPL+, V11, P85, DOI DOI 10.1007/BF01081886
  • [2] BIFURCATION OF LIMIT-CYCLES FROM CENTERS AND SEPARATRIX CYCLES OF PLANAR ANALYTIC SYSTEMS
    BLOWS, TR
    PERKO, LM
    [J]. SIAM REVIEW, 1994, 36 (03) : 341 - 376
  • [3] Bifurcation set and distribution of limit cycles for a class of cubic Hamiltonian system with higher-order perturbed terms
    Cao, HJ
    Liu, ZR
    Jing, ZJ
    [J]. CHAOS SOLITONS & FRACTALS, 2000, 11 (14) : 2293 - 2304
  • [4] A study on the existence of limit cycles of a planar system with third-degree polynomials
    Han, M
    Lin, Y
    Yu, P
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (01): : 41 - 60
  • [5] Li J., 1991, PUBL MAT, V35, P487
  • [6] LI JB, 1987, CHINESE ANN MATH B, V8, P391
  • [7] Hilbert's 16th problem and bifurcations of planar polynomial vector fields
    Li, JB
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (01): : 47 - 106
  • [8] Investigations of bifurcations of limit cycles in Z2-equivariant planar vector fields of degree 5
    Li, JB
    Chan, HSY
    Chung, KW
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (10): : 2137 - 2157
  • [9] Liu Zhengrong, 1995, Systems Science and Mathematical Science, V8, P289
  • [10] BIFURCATION SETS AND DISTRIBUTIONS OF LIMIT-CYCLES IN A HAMILTONIAN SYSTEM APPROACHING THE PRINCIPAL DEFORMATION OF A Z(4)-FIELD
    LIU, ZR
    HU, BB
    LI, JB
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (03): : 809 - 818