Toward Unifying the Mechanistic Concepts in Electrochemical CO2 Reduction from an Integrated Material Design and Catalytic Perspective

被引:46
作者
Bagchi, Debabrata [1 ,2 ]
Roy, Soumyabrata [1 ,2 ]
Sarma, Saurav Ch [1 ,2 ]
Peter, Sebastian C. [1 ,2 ]
机构
[1] Jawaharlal Nehru Ctr Adv Sci Res, New Chem Unit, Bangalore 560064, Karnataka, India
[2] Jawaharlal Nehru Ctr Adv Sci Res, Sch Adv Mat, Bangalore 560064, Karnataka, India
关键词
catalyst designs; CO; (2) reduction reactions; electrocatalyses; reaction mechanisms; GAS-DIFFUSION ELECTRODES; CARBON-DIOXIDE REDUCTION; DEPENDENT ELECTROCATALYTIC REDUCTION; COVALENT ORGANIC FRAMEWORKS; HIGH FARADAIC EFFICIENCY; N-DOPED CARBON; IN-SITU TEM; HIGHLY EFFICIENT; SELECTIVE ELECTROREDUCTION; PRODUCT SELECTIVITY;
D O I
10.1002/adfm.202209023
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrocatalytic CO2 reduction (eCO(2)RR) is one of the avenues with most potential toward achieving sustainable energy economy and global climate change targets by harvesting renewable energy into value-added fuels and chemicals. From an industrial standpoint, eCO(2)RR provides specific advantages over thermochemical and photochemical pathways in terms of much broader product scope, high product specificity, and easy adaptability to the renewable electricity infrastructure. However, unlike water electrolyzers, the lack of suitable cathode materials for eCO(2)RR impedes its commercialization due to material design challenges. The current state-of-the-art catalysts in eCO(2)RR suffer largely from low reaction rates, insufficient C2+ product selectivity, high overpotentials, and industrial-scale stability. Overcoming the scientific and applied technical hurdles for commercial realization demands a holistic integration of catalytic designs, deep mechanistic understanding, and efficient process engineering. Special emphasis on mechanistic understanding and performance outcome is sought to guide the future design of eCO(2)RR catalysts that can play a significant role in closing the anthropogenic carbon loop. This article provides an integrative approach to understand principles of robust eCO(2)RR catalyst design superimposed with underlying mechanistic projections which strongly depend on experimental conditions viz. choice of electrolyte, reactor and membrane design, pH of the solvent, and partial pressure of the CO2.
引用
收藏
页数:46
相关论文
共 527 条
[51]   Tuning the hybridization and charge polarization in metal nanoparticles dispersed over Schiff base functionalized SBA-15 enhances CO2 capture and conversion to formic acid [J].
Cherevotan, Arjun ;
Ray, Bitan ;
Yadav, Anish ;
Bagchi, Debabrata ;
Singh, Ashutosh Kumar ;
Riyaz, Mohd ;
Churipard, Sathyapal R. ;
Naral, Vinay ;
Kaur, Komalpreet ;
Gautam, Ujjal K. ;
Vinod, Chathakudath P. ;
Peter, Sebastian C. .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (35) :18354-18362
[52]   Operando Generated Ordered Heterogeneous Catalyst for the Selective Conversion of CO2 to Methanol [J].
Cherevotan, Arjun ;
Raj, Jithu ;
Dheer, Lakshay ;
Roy, Soumyabrata ;
Sarkar, Shreya ;
Das, Risov ;
Vinod, Chathakudath P. ;
Xu, Shaojun ;
Wells, Peter ;
Waghmare, Umesh, V ;
Peter, Sebastian C. .
ACS ENERGY LETTERS, 2021, 6 (02) :509-516
[53]   Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4 [J].
Choi, Chungseok ;
Kwon, Soonho ;
Cheng, Tao ;
Xu, Mingjie ;
Tieu, Peter ;
Lee, Changsoo ;
Cai, Jin ;
Lee, Hyuck Mo ;
Pan, Xiaoqing ;
Duan, Xiangfeng ;
Goddard, William A., III ;
Huang, Yu .
NATURE CATALYSIS, 2020, 3 (10) :804-812
[54]   Steric Modification of a Cobalt Phthalocyanine/Graphene Catalyst To Give Enhanced and Stable Electrochemical CO2 Reduction to CO [J].
Choi, Jaecheol ;
Wagner, Pawel ;
Gambhir, Sanjeev ;
Jalili, Rouhollah ;
MacFarlane, Douglas R. ;
Wallace, Gordon G. ;
Officer, David L. .
ACS ENERGY LETTERS, 2019, 4 (03) :666-672
[55]   Formation of 1-Butanol from CO2 without *CO Dimerization on a Phosphorus-Rich Copper Cathode [J].
Choi, Minjun ;
Bong, Sungyool ;
Kim, Jin Won ;
Lee, Jaeyoung .
ACS ENERGY LETTERS, 2021, 6 (06) :2090-2095
[56]   Controlling the Oxidation State of the Cu Electrode and Reaction Intermediates for Electrochemical CO2 Reduction to Ethylene [J].
Chou, Tsu-Chin ;
Chang, Chiao-Chun ;
Yu, Hung-Ling ;
Yu, Wen-Yueh ;
Dong, Chung-Li ;
Velasco-Velez, Juan Jesus ;
Chuang, Cheng-Hao ;
Chen, Li-Chyong ;
Lee, Jyh-Fu ;
Chen, Jin-Ming ;
Wu, Heng-Liang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (06) :2857-2867
[57]   Standards and Protocols for Data Acquisition and Reporting for Studies of the Electrochemical Reduction of Carbon Dioxide [J].
Clark, Ezra L. ;
Resasco, Joaquin ;
Landers, Alan ;
Lin, John ;
Chung, Linh-Thao ;
Walton, Amber ;
Hahn, Christopher ;
Jaramillo, Thomas F. ;
Bell, Alexis T. .
ACS CATALYSIS, 2018, 8 (07) :6560-6570
[58]   Direct Observation of the Local Reaction Environment during the Electrochemical Reduction of CO2 [J].
Clark, Ezra L. ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (22) :7012-7020
[59]   Differential Electrochemical Mass Spectrometer Cell Design for Online Quantification of Products Produced during Electrochemical Reduction of CO2 [J].
Clark, Ezra L. ;
Singh, Meenesh R. ;
Kwon, Youngkook ;
Bell, Alexis T. .
ANALYTICAL CHEMISTRY, 2015, 87 (15) :8013-8020
[60]   A NEW PROCEDURE FOR PARTICLE-SIZE DETERMINATION BY EXAFS BASED ON MOLECULAR-DYNAMICS SIMULATIONS [J].
CLAUSEN, BS ;
GRABAEK, L ;
TOPSOE, H ;
HANSEN, LB ;
STOLTZE, P ;
NORSKOV, JK ;
NIELSEN, OH .
JOURNAL OF CATALYSIS, 1993, 141 (02) :368-379