On the Lyapunov spectrum of relative transfer operators

被引:7
作者
Bessa, Mario [1 ]
Stadlbauer, Manuel [2 ]
机构
[1] Univ Beira Interior, Dept Matemat, Rua Marques Avila & Bolama, P-6201001 Covilha, Portugal
[2] Univ Fed Rio de Janeiro, Dept Matemat, CP 68-530, BR-21941909 Rio De Janeiro, RJ, Brazil
关键词
Dominated splitting; relative transfer operator; Lyapunov exponent; MARKOV-CHAINS; MAPS;
D O I
10.1142/S0219493716500246
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We analyze the Lyapunov spectrum of the relative Ruelle operator associated with a skew product whose base is an ergodic automorphism and whose fibers are full shifts. We prove that these operators can be approximated in the C-0-topology by positive matrices with an associated dominated splitting.
引用
收藏
页数:25
相关论文
共 10 条
[1]  
[Anonymous], 1977, LECT NOTES MATH
[2]   The Lyapunov exponents of generic volume-preserving and symplectic maps [J].
Bochi, J ;
Viana, M .
ANNALS OF MATHEMATICS, 2005, 161 (03) :1423-1485
[3]   RUELLES TRANSFER OPERATOR FOR RANDOM SUBSHIFTS OF FINITE-TYPE [J].
BOGENSCHUTZ, T ;
GUNDLACH, VM .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 :413-447
[4]   Gibbs measures for fibred systems [J].
Denker, M ;
Gordin, M .
ADVANCES IN MATHEMATICS, 1999, 148 (02) :161-192
[5]   Coherent structures and isolated spectrum for Perron-Frobenius cocycles [J].
Froyland, Gary ;
Lloyd, Simon ;
Quas, Anthony .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2010, 30 :729-756
[6]   SPECTRAL GAPS IN WASSERSTEIN DISTANCES AND THE 2D STOCHASTIC NAVIER-STOKES EQUATIONS [J].
Hairer, Martin ;
Mattingly, Jonathan C. .
ANNALS OF PROBABILITY, 2008, 36 (06) :2050-2091
[7]   Contraction in the Wasserstein metric for some Markov chains, and applications to the dynamics of expanding maps [J].
Kloeckner, Benoit R. ;
Lopes, Artur O. ;
Stadlbauer, Manuel .
NONLINEARITY, 2015, 28 (11) :4117-4137
[8]  
Stadlbauer M., 2015, ERGOD THEOR DYN, DOI [10.1017/etds.2015.61, DOI 10.1017/ETDS.2015]
[9]   ON RANDOM TOPOLOGICAL MARKOV CHAINS WITH BIG IMAGES AND PREIMAGES [J].
Stadlbauer, Manuel .
STOCHASTICS AND DYNAMICS, 2010, 10 (01) :77-95
[10]  
Villani C, 2009, GRUNDLEHR MATH WISS, V338, P5