Deep Learning-Based Channel Prediction in Realistic Vehicular Communications

被引:47
作者
Joo, Jhihoon [1 ]
Park, Myung Chul [2 ]
Han, Dong Seog [1 ]
Pejovic, Veljko [3 ]
机构
[1] Kyungpook Natl Univ, Sch Elect Engn, Daegu 41566, South Korea
[2] Ctr Embedded Software Technol, Daegu 41566, South Korea
[3] Univ Ljubljana, Fac Comp & Informat Sci, Ljubljana 1000, Slovenia
基金
新加坡国家研究基金会;
关键词
Channel state information; channel prediction; vehicular communications; neural networks; LSTM; IEEE; 802.11P; URBAN;
D O I
10.1109/ACCESS.2019.2901710
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Access to reliable estimates of the wireless channel, such as the channel state information (CSI) and the received signal strength would open opportunities for timely adaptation of transmission parameters and consequently increased throughput and transmission efficiency in vehicular communications. To design the adaptive transmission schemes, it is important to understand the realistic channel properties, especially in vehicular environments where the mobility of communication devices causes rapid channel variation. However, getting CSI estimates is challenging due to the lack of support for obtaining CSI from the chipset. In this paper, we present our efforts towards enabling reliable, up-to-date channel estimates in vehicular communications. We begin by designing and conducting a measurement campaign where we collect IQ (in-phase and quadrature) samples of the IEEE 802.11p transmission and implement CSI extraction algorithms to obtain and analyze wireless channel estimates from various real-world environments. We then propose a deep learning-based channel prediction for predicting future CSI and received signal levels. The trace-based evaluation demonstrates that our prediction approach improves the future power level estimate by 15% to 25% in terms of the root-mean-square-error compared to the latest known channel properties, thus, providing a sound basis for future efforts in anticipatory vehicular communication transmission adaptation.
引用
收藏
页码:27846 / 27858
页数:13
相关论文
共 50 条
  • [31] Deep learning-based prediction approaches of binary star parameters
    Helmy, Islam
    Ismail, Mohamed
    Eid, Doaa
    EXPERIMENTAL ASTRONOMY, 2025, 59 (01)
  • [32] New Deep Learning-Based Passenger Flow Prediction Model
    Utku, Anil
    Kaya, Sema Kayapinar
    TRANSPORTATION RESEARCH RECORD, 2023, 2677 (03) : 1 - 17
  • [33] A Comprehensive Evaluation of Deep Learning-Based Techniques for Traffic Prediction
    Mena-Oreja, Jesus
    Gozalvez, Javier
    IEEE ACCESS, 2020, 8 : 91188 - 91212
  • [34] SDR-Based Channel Emulator for Vehicular Communications
    Ruiz-Garcia, Angel E.
    Gutierrez, Carlos A.
    Vazquez-Castillo, Javier
    Cortez, Joaquin
    2019 IEEE COLOMBIAN CONFERENCE ON COMMUNICATIONS AND COMPUTING (COLCOM 2019), 2019,
  • [35] Deep learning-based selective spectrum sensing and allocation in cognitive vehicular radio networks
    Paul, Anal
    Choi, Kwonhue
    VEHICULAR COMMUNICATIONS, 2023, 41
  • [36] Joint TRFI and Deep Learning for Vehicular Channel Estimation
    Gizzini, Abdul Karim
    Chafii, Marwa
    Nimr, Ahmad
    Fettweis, Gerhard
    2020 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2020,
  • [37] Deep-Learning Based Channel Estimation for OFDM Wireless Communications
    Tian, Guoda
    Cai, Xuesong
    Zhou, Tian
    Wang, Weinan
    Tufvesson, Fredrik
    2022 IEEE 23RD INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATION (SPAWC), 2022,
  • [38] Deep Learning-Based Channel Extrapolation for Pattern Reconfigurable Massive MIMO
    Liang, Mu
    Li, Ang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (03) : 4395 - 4400
  • [39] Deep learning-based channel estimation in MIMO system for pilot decontamination
    Reddy, Gondhi Navabharat
    Kumar, C. V. Ravi
    INTERNATIONAL JOURNAL OF AD HOC AND UBIQUITOUS COMPUTING, 2023, 44 (03) : 148 - 166
  • [40] On the Influence of Optimizers in Deep Learning-Based Side-Channel Analysis
    Perin, Guilherme
    Picek, Stjepan
    SELECTED AREAS IN CRYPTOGRAPHY, 2021, 12804 : 615 - 636