Strongly regular edge-transitive graphs

被引:11
作者
Morris, Joy [1 ]
Praeger, Cheryl E. [2 ]
Spiga, Pablo [3 ]
机构
[1] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, Canada
[2] Univ Western Australia, Sch Math & Stat, Crawley, WA 6009, Australia
[3] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35121 Padua, Italy
基金
澳大利亚研究理事会;
关键词
Strongly regular graphs; vertex-transitive graphs; edge-transitive graphs; normal quotient reduction; automorphism group; CAYLEY-GRAPHS; PERMUTATION-GROUPS;
D O I
10.26493/1855-3974.109.97f
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we examine the structure of vertex- and edge-transitive strongly regular graphs, using normal quotient reduction. We show that the irreducible graphs in this family have quasiprimitive automorphism groups, and prove (using the Classification of Finite Simple Groups) that no graph in this family has a holomorphic simple automorphism group. We also find some constraints on the parameters of the graphs in this family that reduce to complete graphs.
引用
收藏
页码:137 / 155
页数:19
相关论文
共 21 条
  • [1] [Anonymous], 2001, ALGEBRAIC GRAPH THEO, DOI DOI 10.1007/978-1-4613-0163-9
  • [2] STRONGLY REGULAR CAYLEY-GRAPHS WITH LAMBDA-MU=-1
    ARASU, KT
    JUNGNICKEL, D
    MA, SL
    POTT, A
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1994, 67 (01) : 116 - 125
  • [3] Bridges WG., 1979, Ars Combin, V8, P143
  • [4] SOME NEW STRONGLY REGULAR GRAPHS
    BROUWER, AE
    IVANOV, AV
    KLIN, MH
    [J]. COMBINATORICA, 1989, 9 (04) : 339 - 344
  • [5] Dixon J.D., 1996, GRADUATE TEXTS MATH, V163, DOI DOI 10.1007/978-1-4612-0731-3
  • [6] Fulman J.E., 2003, Groups, Combinatorics and Geometry, P99
  • [7] Locally s-arc transitive graphs with two different quasiprimitive actions
    Giudici, M
    Li, CH
    Praeger, CE
    [J]. JOURNAL OF ALGEBRA, 2006, 299 (02) : 863 - 890
  • [8] Characterizing finite locally s-arc transitive graphs with a star normal quotient
    Giudici, Michael
    Li, Cai Heng
    Praeger, Cheryl E.
    [J]. JOURNAL OF GROUP THEORY, 2006, 9 (05) : 641 - 658
  • [9] Hestenes MD., 1971, Computers in Algebra and Number Theory, P141
  • [10] Higman D. G., 1970, Rendiconti del Seminario Matematico della Universita di Padova, V44, P1