Three Class Emotions Recognition Based On Deep Learning Using Staked Autoencoder

被引:0
作者
Yang, Banghua [1 ]
Han, Xu [1 ]
Tang, Jianzhen [1 ]
机构
[1] Shanghai Univ, Key Lab Power Stn Automat Technol, Sch Mechatron Engn & Automat, Dept Automat, Shanghai 200072, Peoples R China
来源
2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI) | 2017年
关键词
emotion recognition; sacked autoencoder; SEED; differential entropy; deep learning; EEG;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Emotion recognition is a hot spot in advanced human-computer interaction system, which is of great significance in artificial intelligence, health care, distance education, military field and so on. The paper builds a stacked autoencoder deep learning classification network consist of an input layer, two autoencoder hidden layers and a softmax classifier output layer based on SJTU Emotion EEG Dataset (SEED). Pretrain the first autoencoder employed L-BFGS to optimize the cost function. Then pretrain the second autoencoder with the output of first autoencoder. Finally send to the softmax classifier. Pretrain each autoencoder in forward propagation, then fine-tuning the whole network in back propagation. The well-trained network is used to classify three emotion states including happy, neural and grief. The raw inputs are differential entropy of EEG signal in five rhythmic frequencies band and the differential entropy of whole EEG signal. Fourteen experiments are performed with 5-fold cross validation, the average classification accuracy of three class emotion states is 59.6%. 66.27%. 71.97%. 78.48%. 82.56% and 85.5%. The result shows the higher frequency band differential entropy like Gamma band is more relative to emotion reaction.
引用
收藏
页数:5
相关论文
共 19 条
  • [1] Cruz-Roa AA, 2013, LECT NOTES COMPUT SC, V8150, P403, DOI 10.1007/978-3-642-40763-5_50
  • [2] Bai J, 2014, LECT NOTES COMPUT SC, V8588, P235, DOI 10.1007/978-3-319-09333-8_25
  • [3] Basatini FM., 2014, J DATA SCI, V12, P563, DOI [10.6339/JDS.201410_12(4).0002, DOI 10.6339/JDS.201410_12(4).0002]
  • [4] Bengio Y., ADV NEURAL INFORM PR, P153
  • [5] Duan R. N., 2014, IEEE TRANSL C, P81
  • [6] Fei Zang, 2011, 2011 3rd International Conference on Multimedia Information Networking and Security, P16, DOI 10.1109/MINES.2011.123
  • [7] Gonzalez F. A., 2015, SUPERVISED GREEDY LA, V9329, P275
  • [8] Goodfellow I. J., 2013, J COMPUTER SCI
  • [9] Real-time EEG-based emotion monitoring using stable features
    Lan, Zirui
    Sourina, Olga
    Wang, Lipo
    Liu, Yisi
    [J]. VISUAL COMPUTER, 2016, 32 (03) : 347 - 358
  • [10] Li Mu, 2009, Annu Int Conf IEEE Eng Med Biol Soc, V2009, P1323, DOI 10.1109/IEMBS.2009.5334139