Exact confidence intervals and hypothesis tests for parameters of discrete distributions

被引:5
作者
Thulin, Mans [1 ]
Zwanzig, Silvelyn [2 ]
机构
[1] Uppsala Univ, Dept Stat, S-75105 Uppsala, Sweden
[2] Uppsala Univ, Dept Math, S-75105 Uppsala, Sweden
关键词
binomial distribution; confidence interval; expected length; fiducial interval; hypothesis test; Poisson distribution; BINOMIAL PROPORTION; FIDUCIAL LIMITS; PROBABILITY; COVERAGE; CRITERIA; CURVES; SAMPLE;
D O I
10.3150/15-BEJ750
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study exact confidence intervals and two-sided hypothesis tests for univariate parameters of stochastically increasing discrete distributions, such as the binomial and Poisson distributions. It is shown that several popular methods for constructing short intervals lack strict nestedness, meaning that accepting a lower confidence level not always will lead to a shorter confidence interval. These intervals correspond to a class of tests that are shown to assign differing p-values to indistinguishable models. Finally, we show that among strictly nested intervals, fiducial intervals, including the Clopper-Pearson interval for a binomial proportion and the Garwood interval for a Poisson mean, are optimal.
引用
收藏
页码:479 / 502
页数:24
相关论文
共 37 条
  • [1] Dealing with discreteness: making 'exact' confidence intervals for proportions, differences of proportions, and odds ratios more exact
    Agresti, A
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2003, 12 (01) : 3 - 21
  • [2] On small-sample confidence intervals for parameters in discrete distributions
    Agresti, A
    Min, YY
    [J]. BIOMETRICS, 2001, 57 (03) : 963 - 971
  • [4] Confidence curves and improved exact confidence intervals for discrete distributions
    Blaker, H
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2000, 28 (04): : 783 - 798
  • [5] BINOMIAL CONFIDENCE-INTERVALS
    BLYTH, CR
    STILL, HA
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1983, 78 (381) : 108 - 116
  • [6] Bol'sev L. N., 1965, TEOR VEROYA PRIMEN, V10, P187
  • [7] Interval estimation for a binomial proportion - Comment - Rejoinder
    Brown, LD
    Cai, TT
    DasGupta, A
    Agresti, A
    Coull, BA
    Casella, G
    Corcoran, C
    Mehta, C
    Ghosh, M
    Santner, TJ
    Brown, LD
    Cai, TT
    DasGupta, A
    [J]. STATISTICAL SCIENCE, 2001, 16 (02) : 101 - 133
  • [8] Comparison of Poisson confidence intervals
    Byrne, J
    Kabaila, P
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2005, 34 (03) : 545 - 556
  • [9] REFINING BINOMIAL CONFIDENCE-INTERVALS
    CASELLA, G
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1986, 14 (02): : 113 - 129
  • [10] REFINING POISSON CONFIDENCE-INTERVALS
    CASELLA, G
    ROBERT, C
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1989, 17 (01): : 45 - 57