Cartilage-like mechanical properties of poly (ethylene glycol)-diacrylate hydrogels

被引:172
|
作者
Nguyen, Quynhhoa T. [1 ]
Hwang, Yongsung [3 ,4 ]
Chen, Albert C. [1 ]
Varghese, Shyni [1 ,3 ,4 ,5 ]
Sah, Robert L. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Orthopaed Surg, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Engn Program, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Dept Mat Sci, La Jolla, CA 92093 USA
[5] Univ Calif San Diego, Inst Engn Med, Ctr Musculoskeletal Res, La Jolla, CA 92093 USA
关键词
PEG; Biomechanics; Crosslink; Compression; Tension; Modulus; BOVINE ARTICULAR-CARTILAGE; BIPHASIC MATERIAL PROPERTIES; LINKING DENSITY INFLUENCES; MESENCHYMAL STEM-CELLS; HUMAN NUCLEUS PULPOSUS; HUMAN ANULUS FIBROSUS; PEG HYDROGELS; CHONDROCYTES; COMPRESSION; AGAROSE;
D O I
10.1016/j.biomaterials.2012.06.005
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Hydrogels prepared from poly-(ethylene glycol) (PEG) have been used in a variety of studies of cartilage tissue engineering. Such hydrogels may also be useful as a tunable mechanical material for cartilage repair. Previous studies have characterized the chemical and mechanical properties of PEG-based hydrogels, as modulated by precursor molecular weight and concentration. Cartilage mechanical properties vary substantially, with maturation, with depth from the articular surface, in health and disease, and in compression and tension. We hypothesized that PEG hydrogels could mimic a broad range of the compressive and tensile mechanical properties of articular cartilage. The objective of this study was to characterize the mechanical properties of PEG hydrogels over a broad range and with reference to articular cartilage. In particular, we assessed the effects of PEG precursor molecular weight (508 Da, 3.4 kDa, 6 kDa, and 10 kDa) and concentration (10-40%) on swelling property, equilibrium confined compressive modulus (H-A0), compressive dynamic stiffness, and hydraulic permeability (k(p0)) of PEG hydrogels in static/dynamic confined compression tests, and equilibrium tensile modulus (E-ten) in tension tests. As molecular weight of PEG decreased and concentration increased, hydrogels exhibited a decrease in swelling ratio (31.5-2.2), an increase in H-A0 (0.01-2.46 MPa) and E-ten (0.02-3.5 MPa), an increase in dynamic compressive stiffness (0.055-42.9 MPa), and a decrease in k(p0) (1.2 x 10(-15) to 8.5 x 10(-15) m(2)/(Pa s)). The frequency-dependence of dynamic compressive stiffness amplitude and phase, as well as the strain-dependence of permeability, were typical of the time- and strain-dependent mechanical behavior of articular cartilage. H-A0 and E-ten were positively correlated with the final PEG concentration, accounting for swelling. These results indicate that PEG hydrogels can be prepared to mimic many of the static and dynamic mechanical properties of articular cartilage. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6682 / 6690
页数:9
相关论文
共 50 条
  • [1] The effects of monoacrylated poly(ethylene glycol) on the properties of poly(ethylene glycol) diacrylate hydrogels used for tissue engineering
    Beamish, Jeffrey A.
    Zhu, Junmin
    Kottke-Marchant, Kandice
    Marchant, Roger E.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2010, 92A (02) : 441 - 450
  • [2] Cartilage formation through alterations of amphiphilicity of poly(ethylene glycol)-poly(caprolactone) copolymer hydrogels
    Ko, Chao-Yin
    Yang, Chin-Yu
    Yang, Shu-Rui
    Ku, Kuan-Lin
    Tsao, Chung-Kan
    Chuang, David Chwei-Chin
    Chu, I-Ming
    Cheng, Ming-Huei
    RSC ADVANCES, 2013, 3 (48): : 25769 - 25779
  • [3] Mechanical behavior of bioactive poly(ethylene glycol) diacrylate matrices for biomedical application
    Della Sala, Francesca
    Biondi, Marco
    Guarnieri, Daniela
    Borzacchiello, Assunta
    Ambrosio, Luigi
    Mayol, Laura
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2020, 110 (110)
  • [4] Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering
    Rennerfeldt, Deena A.
    Renth, Amanda N.
    Talata, Zsolt
    Gehrke, Stevin H.
    Detamore, Michael S.
    BIOMATERIALS, 2013, 34 (33) : 8241 - 8257
  • [5] Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels
    Roberts, Justine J.
    Earnshaw, Audrey
    Ferguson, Virginia L.
    Bryant, Stephanie J.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2011, 99B (01) : 158 - 169
  • [6] Bioactive Polyurethane-Poly(ethylene Glycol) Diacrylate Hydrogels for Applications in Tissue Engineering
    Yuan, Yixuan
    Tyson, Caleb
    Szyniec, Annika
    Agro, Samuel
    Tavakol, Tara N.
    Harmon, Alexander
    Lampkins, Dessarae
    Pearson, Lauran
    Dumas, Jerald E.
    Taite, Lakeshia J.
    GELS, 2024, 10 (02)
  • [7] Poly(ethylene glycol) Hydrogels with Tailorable Surface and Mechanical Properties for Tissue Engineering Applications
    Patel, Nehal R.
    Whitehead, Anna K.
    Newman, Jamie J.
    Caldorera-Moore, Mary E.
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2017, 3 (08): : 1494 - 1498
  • [8] Bioinspired Design of a Cartilage-like Lubricated Composite with Mechanical Robustness
    Zhao, Weiyi
    Zhang, Yunlei
    Zhao, Xiaoduo
    Ji, Zhongying
    Ma, Zhengfeng
    Gao, Xiangsheng
    Ma, Shuanhong
    Wang, Xiaolong
    Zhou, Feng
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (07) : 9899 - 9908
  • [9] Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold
    Musumeci, G.
    Loreto, C.
    Carnazza, M. L.
    Coppolino, F.
    Cardile, V.
    Leonardi, R.
    EUROPEAN JOURNAL OF HISTOCHEMISTRY, 2011, 55 (03): : 162 - 168
  • [10] 3D Printed Cartilage-Like Tissue Constructs with Spatially Controlled Mechanical Properties
    de Melo, Bruna A. G.
    Jodat, Yasamin A.
    Mehrotra, Shreya
    Calabrese, Michelle A.
    Kamperman, Tom
    Mandal, Biman B.
    Santana, Maria H. A.
    Alsberg, Eben
    Leijten, Jeroen
    Shin, Su Ryon
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (51)