Real-Time Anomaly Detection of Continuously Monitored Periodic Bio-Signals Like ECG

被引:0
作者
Kamiyama, Takuya [1 ]
Chakraborty, Goutam [2 ]
机构
[1] Iwate Prefectural Univ, Grad Sch Software & Informat Sci, Takizawa, Iwate, Japan
[2] Iwate Prefectural Univ, Dept Software & Informat Sci, Takizawa, Iwate, Japan
来源
NEW FRONTIERS IN ARTIFICIAL INTELLIGENCE | 2017年 / 10091卷
关键词
Periodic time series; Anomaly detection; Fundamental period; Clustering; SERIES;
D O I
10.1007/978-3-319-50953-2_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we proposed an efficient heuristic algorithm for real-time anomaly detection of periodic bio-signals. We introduced a new concept, "mother signal" which is the average of normal subsequences of one period length. Their number is overwhelmingly large compared to anomalies. From the time series, first we find the fundamental time period, assuming the period to be stable over the whole time. Next, we find the normal subsequence of length equal to time-period and call it the "mother signal". When the distance of a subsequence of same length is large from the mother signal, we identify it as anomaly. While calculating the distance, we ensure that it is not large due to time shift. To ensure that, we shift-and-rotate the subsequence in step of one slot at a time and find the minimum distance of all such comparisons. The proposed heuristic algorithm using mother signal is efficient. Results are compared and found to be similar to that obtained using brute force comparisons of all possible pairs. Computational costs are compared to show that the proposed method is more efficient compared to existing works.
引用
收藏
页码:418 / 427
页数:10
相关论文
共 50 条
  • [21] Real-time anomaly detection with Bayesian dynamic linear models
    Luong Ha Nguyen
    Goulet, James-A
    STRUCTURAL CONTROL & HEALTH MONITORING, 2019, 26 (09)
  • [22] Real-Time Anomaly Detection and Categorization for Satellite Reaction Wheels
    Riveiros, Alejandro Penacho
    Xing, Yu
    Bastianello, Nicola
    Johansson, Karl H.
    2024 EUROPEAN CONTROL CONFERENCE, ECC 2024, 2024, : 253 - 260
  • [23] Real-time anomaly detection in gas sensor streaming data
    Wu, Haibo
    Shi, Shiliang
    INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, 2021, 14 (01) : 81 - 88
  • [24] Real-Time Adaptive Anomaly Detection in Industrial IoT Environments
    Raeiszadeh, Mahsa
    Ebrahimzadeh, Amin
    Glitho, Roch H.
    Eker, Johan
    Mini, Raquel A. F.
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (06): : 6839 - 6856
  • [25] RX architectures for real-time anomaly detection in hyperspectral images
    Rossi, A.
    Acito, N.
    Diani, M.
    Corsini, G.
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2014, 9 (03) : 503 - 517
  • [26] A Real-time Explainable Anomaly Detection System for Connected Vehicles
    Nguyen, Duc Cuong
    Nguyen, Kien Dang
    Chacko, Simy
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS, BIG DATA AND SECURITY (IOTBDS), 2022, : 17 - 25
  • [27] Real-time Anomaly Detection and Classification in Streaming PMU Data
    Hannon, Christopher
    Deka, Deepjyoti
    Jin, Dong
    Vuffray, Marc
    Lokhov, Andrey Y.
    2021 IEEE MADRID POWERTECH, 2021,
  • [28] A Real-time Temperature Anomaly Detection Method for IoT Data
    Liu, Wei
    Jiang, Hongyi
    Che, Dandan
    Chen, Lifei
    Jiang, Qingshan
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS, BIG DATA AND SECURITY (IOTBDS), 2020, : 112 - 118
  • [29] Real-Time Anomaly Detection of Network Traffic Based on CNN
    Liu, Haitao
    Wang, Haifeng
    SYMMETRY-BASEL, 2023, 15 (06):
  • [30] Deep learning based anomaly detection in real-time video
    Elmetwally A.
    Eldeeb R.
    Elmougy S.
    Multimedia Tools and Applications, 2025, 84 (11) : 9555 - 9571