Study Designs and Statistical Analyses for Biomarker Research

被引:52
|
作者
Gosho, Masahiko [1 ]
Nagashima, Kengo [1 ,2 ]
Sato, Yasunori [3 ]
机构
[1] Tokyo Univ Sci, Grad Sch Engn, Shinjuku Ku, Tokyo 1628601, Japan
[2] Josai Univ, Fac Pharmaceut Sci, Sakado, Saitama 3500295, Japan
[3] Chiba Univ Med, Clin Res Ctr, Chuo Ku, Chiba 2608677, Japan
来源
SENSORS | 2012年 / 12卷 / 07期
基金
日本学术振兴会;
关键词
biomarker adaptive design; confounding; multiplicity; predictive factor; statistical test; CLINICAL-TRIAL DESIGNS; FALSE DISCOVERY RATE; SURROGATE ENDPOINTS; GENE-EXPRESSION; BREAST-CANCER; LUNG-CANCER; VALIDATION; POLYMORPHISMS; CHEMOTHERAPY; PROGNOSIS;
D O I
10.3390/s120708966
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Biomarkers are becoming increasingly important for streamlining drug discovery and development. In addition, biomarkers are widely expected to be used as a tool for disease diagnosis, personalized medication, and surrogate endpoints in clinical research. In this paper, we highlight several important aspects related to study design and statistical analysis for clinical research incorporating biomarkers. We describe the typical and current study designs for exploring, detecting, and utilizing biomarkers. Furthermore, we introduce statistical issues such as confounding and multiplicity for statistical tests in biomarker research.
引用
收藏
页码:8966 / 8986
页数:21
相关论文
共 50 条
  • [21] Statistical Methods for Selective Biomarker Testing
    Ding, A. Adam
    DelRocco, Natalie
    Wu, Samuel S.
    STATISTICS IN BIOSCIENCES, 2024, 16 (03) : 693 - 722
  • [22] Tumor Acquisition for Biomarker Research in Lung Cancer
    Stevenson, Marvaretta
    Christensen, Jared
    Shoemaker, Debra
    Foster, Traci
    Barry, William T.
    Tong, Betty C.
    Wahidi, Momen
    Shofer, Scott
    Datto, Michael
    Ginsburg, Geoffrey
    Crawford, Jeffrey
    D'Amico, Thomas
    Ready, Neal
    CANCER INVESTIGATION, 2014, 32 (06) : 291 - 298
  • [23] Research Objectives, Statistical Analyses and Interpretation of Health-Related Quality of Life Data in Glioma Research: A Systematic Review
    Coomans, Marijke B.
    Peeters, Marthe C. M.
    Koekkoek, Johan A. F.
    Schoones, Jan W.
    Reijneveld, Jaap
    Taphoorn, Martin J. B.
    Dirven, Linda
    CANCERS, 2020, 12 (12) : 1 - 12
  • [24] Proteomic analyses identify major vault protein as a prognostic biomarker for fatal prostate cancer
    Ramberg, Hakon
    Richardsen, Elin
    de Souza, Gustavo A.
    Rakaee, Mehrdad
    Stensland, Maria Ekman
    Braadland, Peder Rustoen
    Nygard, Stale
    Ogren, Olov
    Guldvik, Ingrid J.
    Berge, Viktor
    Svindland, Aud
    Tasken, Kristin A.
    Andersen, Sigve
    CARCINOGENESIS, 2021, 42 (05) : 685 - 693
  • [25] False discovery rate paradigms for statistical analyses of microarray gene expression data
    Cheng, Cheng
    Pounds, Stan
    BIOINFORMATION, 2007, 1 (10) : 436 - 446
  • [26] Biomarker Research in Breast Cancer
    Maxwell, Cathy
    CLINICAL JOURNAL OF ONCOLOGY NURSING, 2010, 14 (06) : 771 - 783
  • [27] Metabolomics in Cancer Biomarker Research
    Wang X.
    Chen S.
    Jia W.
    Current Pharmacology Reports, 2016, 2 (6) : 293 - 298
  • [28] Biomarker-Guided Non-Adaptive Trial Designs in Phase II and Phase III: A Methodological Review
    Antoniou, Miranta
    Kolamunnage-Dona, Ruwanthi
    Jorgensen, Andrea L.
    JOURNAL OF PERSONALIZED MEDICINE, 2017, 7 (01):
  • [29] Pan-cancer analyses identify DCBLD2 as an oncogenic, immunological, and prognostic biomarker
    Xie, Pan
    Liu, Jun-Yan
    Yan, Han
    Wang, Zhi-Bin
    Jiang, Shi-Long
    Li, Xi
    Liu, Zhao-Qian
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [30] Study designs in dermatology Practical applications of study designs and their statistics in dermatology
    Silverberg, Jonathan I.
    JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2015, 73 (05) : 733 - 740