Study Designs and Statistical Analyses for Biomarker Research

被引:52
|
作者
Gosho, Masahiko [1 ]
Nagashima, Kengo [1 ,2 ]
Sato, Yasunori [3 ]
机构
[1] Tokyo Univ Sci, Grad Sch Engn, Shinjuku Ku, Tokyo 1628601, Japan
[2] Josai Univ, Fac Pharmaceut Sci, Sakado, Saitama 3500295, Japan
[3] Chiba Univ Med, Clin Res Ctr, Chuo Ku, Chiba 2608677, Japan
来源
SENSORS | 2012年 / 12卷 / 07期
基金
日本学术振兴会;
关键词
biomarker adaptive design; confounding; multiplicity; predictive factor; statistical test; CLINICAL-TRIAL DESIGNS; FALSE DISCOVERY RATE; SURROGATE ENDPOINTS; GENE-EXPRESSION; BREAST-CANCER; LUNG-CANCER; VALIDATION; POLYMORPHISMS; CHEMOTHERAPY; PROGNOSIS;
D O I
10.3390/s120708966
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Biomarkers are becoming increasingly important for streamlining drug discovery and development. In addition, biomarkers are widely expected to be used as a tool for disease diagnosis, personalized medication, and surrogate endpoints in clinical research. In this paper, we highlight several important aspects related to study design and statistical analysis for clinical research incorporating biomarkers. We describe the typical and current study designs for exploring, detecting, and utilizing biomarkers. Furthermore, we introduce statistical issues such as confounding and multiplicity for statistical tests in biomarker research.
引用
收藏
页码:8966 / 8986
页数:21
相关论文
共 50 条
  • [11] Clinical trial designs for testing biomarker-based personalized therapies
    Lai, Tze Leung
    Lavori, Philip W.
    Shih, Mei-Chiung I.
    Sikic, Branimir I.
    CLINICAL TRIALS, 2012, 9 (02) : 141 - 154
  • [12] Perspectives on statistical strategies for the regulatory biomarker qualification process
    Hendrix, Suzanne B.
    Mogg, Robin
    Wang, Sue Jane
    Chakravarty, Aloka
    Romero, Klaus
    Dickson, Samuel P.
    Sauer, John-Michael
    McShane, Lisa M.
    BIOMARKERS IN MEDICINE, 2021, 15 (09) : 669 - 684
  • [13] Statistical design for a confirmatory trial with a continuous predictive biomarker: A case study
    Joshi, Adarsh
    Zhang, Jenny
    Fang, Liang
    CONTEMPORARY CLINICAL TRIALS, 2017, 63 : 19 - 29
  • [14] MicroRNA expression as risk biomarker of breast cancer metastasis: a pilot retrospective case-cohort study
    Marino, Augusto L. F.
    Evangelista, Adriane F.
    Vieira, Rene A. C.
    Macedo, Taciane
    Kerr, Ligia M.
    Abrahao-Machado, Lucas Faria
    Longatto-Filho, Adhemar
    Silveira, Henrique C. S.
    Marques, Marcia M. C.
    BMC CANCER, 2014, 14
  • [15] Adaptive designs for clinical trials assessing biomarker-guided treatment strategies
    Wason, J.
    Marshall, A.
    Dunn, J.
    Stein, R. C.
    Stallard, N.
    BRITISH JOURNAL OF CANCER, 2014, 110 (08) : 1950 - 1957
  • [16] Statistical designs for phase II trials
    Kramar, A
    Potvin, D
    Hill, C
    REVUE D EPIDEMIOLOGIE ET DE SANTE PUBLIQUE, 1996, 44 (04): : 364 - 371
  • [17] An original study assessing biomarker success rate in breast cancer recurrence biomarker research
    Savva, K-V.
    MacKenzie, A.
    Coombes, R. C.
    Zhifang, N. M.
    Hanna, B. G.
    Peters, C. J.
    BMC MEDICINE, 2024, 22 (01):
  • [18] Clinical Trial Designs for Predictive Biomarker Validation: One Size Does Not Fit All
    Mandrekar, Sumithra J.
    Sargent, Daniel J.
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2009, 19 (03) : 530 - 542
  • [19] Bioinformatic and Experimental Analyses Reveal That KIF4A Is a Biomarker of Therapeutic Sensitivity and Predicts Prognosis in Cervical Cancer Patients
    Wu, Jie
    Li, Lan
    Zhong, Hao
    Zhang, Hao-Han
    Li, Jing
    Zhang, Hui-Bo
    Zhao, Ya-Qi
    Xu, Bin
    Song, Qi-Bin
    CURRENT MEDICAL SCIENCE, 2022, 42 (06) : 1273 - 1284
  • [20] STATISTICAL CHARACTERISTICS OF A GOOD BIOMARKER IN ONCOLOGY
    Mariano Esteban, Luis
    Etelvina Escorihuela-Sahun, Maria
    Sanz, Gerardo
    Viridiana Munoz-Rivero, Marta
    Borque-Fernando, Angel
    ARCHIVOS ESPANOLES DE UROLOGIA, 2022, 75 (02): : 95 - 102