Integration of GPS and Dead Reckoning Navigation System Using Moving Horizon Estimation

被引:0
作者
Omar, Halima Mansour [1 ]
Zhang Yanzhong [1 ]
Bo, Zhang [1 ]
Gul, Haris Ubaid [1 ]
机构
[1] Beihang Univ, Beijing, Peoples R China
来源
2016 IEEE INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC) | 2016年
关键词
dead reckoning; global positioning system; moving horizon estimation; Kalman filtering; data fusion;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose an integration of GPS and dead reckoning navigation system based on moving horizon estimation (MHE) in order to improve its performance. The basic idea of MHE is to minimize an estimation cost function defined on a sliding window composed of a finite number of time stages. From simulation results we have done an objective comparison which leads us to confirm that MHE method is more accuracy than Unscented Kalman Filter (UKF) and Extended Kalman filter (EKF).
引用
收藏
页码:553 / 556
页数:4
相关论文
共 7 条
  • [1] Advances in Moving Horizon Estimation for Nonlinear Systems
    Alessandri, Angelo
    Baglietto, Marco
    Battistelli, Giorgio
    Zavala, Victor
    [J]. 49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 5681 - 5688
  • [2] A real-time algorithm for moving horizon state and parameter estimation
    Kuehl, Peter
    Diehl, Moritz
    Kraus, Tom
    Schloeder, Johannes P.
    Bock, Hans Georg
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2011, 35 (01) : 71 - 83
  • [3] Receding horizon recursive state estimation
    Ling, KV
    Lim, KW
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (09) : 1750 - 1753
  • [4] Vandersteen J., 2013, J GUIDANCE CONTROL D, V36
  • [5] An adaptive information fusion method to vehicle integrated navigation
    Wu, QP
    Gao, ZY
    Wan, DJ
    [J]. 2002 IEEE POSITION LOCATION AND NAVIGATION SYMPOSIUM, 2002, : 248 - 253
  • [6] Yang D. K., 2007, P 6 INT C MACH LEARN
  • [7] Zhao L., 2012, J INFORM COMPUTATION, V9