THE LANGLANDS QUOTIENT THEOREM FOR FINITE CENTRAL EXTENSIONS OF p-ADIC GROUPS

被引:35
作者
Ban, Dubravka [1 ]
Jantzen, Chris [2 ]
机构
[1] So Illinois Univ, Dept Math, Carbondale, IL 62901 USA
[2] E Carolina Univ, Dept Math, Greenville, NC 27858 USA
关键词
Metaplectic groups; Langlands quotient theorem; p-adic groups; CLASSIFICATION;
D O I
10.3336/gm.48.2.07
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the Langlands quotient theorem in the context of finite central extensions of connected, reductive p-adic groups.
引用
收藏
页码:313 / 334
页数:22
相关论文
共 24 条
[1]  
[Anonymous], preprint
[2]  
[Anonymous], 2002, ALGEBRA
[3]  
Arthur J., 2005, Harmonic analysis, the trace formula, and Shimura varieties, V4, P1
[4]   Jacquet Modules and the Langlands Classification [J].
Ban, Dubravka ;
Jantzen, Chris .
MICHIGAN MATHEMATICAL JOURNAL, 2008, 56 (03) :637-653
[5]  
BERNSTEIN IN, 1977, ANN SCI ECOLE NORM S, V10, P441
[6]  
BERNSTEIN J, REPRESENTATION P ADI
[7]  
Borel A., 1980, Continuous cohomology, discrete subgroups, and representations of reductive groups, V94
[8]  
BOREL A, LINER ALGEBRAIC GROU
[9]  
Bourbaki N., 2002, Elements of Mathematics, P4, DOI DOI 10.1007/978-3-540-89394-3
[10]  
Brylinski JL, 2001, PUBL MATH, P5