Partitions with Parts Separated by Parity

被引:13
作者
Andrews, George E. [1 ]
机构
[1] Penn State Univ, University Pk, PA 16802 USA
关键词
Partitions; Parity of parts; Ramanujan;
D O I
10.1007/s00026-019-00428-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There have been a number of papers on partitions in which the parity of parts plays a central role. In this paper, the parts of partitions are separated by parity, either all odd parts are smaller than all even parts or vice versa. This concept first arose in a study related to the third-order mock theta function (q). The current study also leads back to one of the Ramanujan's more mysterious functions.
引用
收藏
页码:241 / 248
页数:8
相关论文
共 16 条
[1]  
Andrews G.E., 2005, Ramanujan's Lost Notebook
[2]  
Andrews G.E., 1976, The Theory of Partitions
[3]   RAMANUJAN LOST NOTEBOOK-V - EULER PARTITION IDENTITY [J].
ANDREWS, GE .
ADVANCES IN MATHEMATICS, 1986, 61 (02) :156-164
[4]   PARTITIONS AND INDEFINITE QUADRATIC-FORMS [J].
ANDREWS, GE ;
DYSON, FJ ;
HICKERSON, D .
INVENTIONES MATHEMATICAE, 1988, 91 (03) :391-407
[5]   QUESTIONS AND CONJECTURES IN PARTITION THEORY [J].
ANDREWS, GE .
AMERICAN MATHEMATICAL MONTHLY, 1986, 93 (09) :708-711
[6]  
Andrews GE., 2009, Ramanujans Lost Notebook
[7]   Integer Partitions with Even Parts Below Odd Parts and the Mock Theta Functions [J].
Andrews, George E. .
ANNALS OF COMBINATORICS, 2018, 22 (03) :433-445
[8]   Parity in partition identities [J].
Andrews, George E. .
RAMANUJAN JOURNAL, 2010, 23 (1-3) :45-90
[9]  
Andrews George E, 2013, FOURIER ANAL NUMBER, V28, P1
[10]   Q-IDENTITIES FOR MAASS WAVEFORMS [J].
COHEN, H .
INVENTIONES MATHEMATICAE, 1988, 91 (03) :409-422