The importance of observation versus process error in analyses of global ungulate populations

被引:47
作者
Ahrestani, Farshid S. [1 ,2 ]
Hebblewhite, Mark [3 ]
Post, Eric [1 ,2 ]
机构
[1] Penn State Univ, Polar Ctr, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Biol, University Pk, PA 16802 USA
[3] Univ Montana, Dept Ecosyst & Conservat Sci, Coll Forestry & Conservat, Wildlife Biol Program, Missoula, MT 59812 USA
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
关键词
DENSITY-DEPENDENCE; TIME-SERIES; PROCESS NOISE; RED DEER; DYNAMICS; PREDATION; WOLVES; ELK; VARIABILITY; MODELS;
D O I
10.1038/srep03125
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Population abundance data vary widely in quality and are rarely accurate. The two main components of error in such data are observation and process error. We used Bayesian state space models to estimate the observation and process error in time-series of 55 globally distributed populations of two species, Cervus elaphus (elk/red deer) and Rangifer tarandus (caribou/reindeer). We examined variation among populations and species in the magnitude of estimates of error components and density dependence using generalized linear models. Process error exceeded observation error in 75% of all populations, and on average, both components of error were greater in Rangifer than in Cervus populations. Observation error differed significantly across the different observation methods, and predation and time-series length differentially affected the error components. Comparing the Bayesian model results to traditional models that do not separate error components revealed the potential for misleading inferences about sources of variation in population dynamics.
引用
收藏
页数:10
相关论文
共 53 条
[1]  
[Anonymous], 2018, Generalized linear models and extensions
[2]   Comparative patterns of predation by cougars and recolonizing wolves in Montana's Madison Range [J].
Atwood, Todd C. ;
Gese, Eric M. ;
Kunkel, Kyran E. .
JOURNAL OF WILDLIFE MANAGEMENT, 2007, 71 (04) :1098-1106
[3]  
Besbeas P, 2009, ENVIRON ECOL STAT SE, V3, P513, DOI 10.1007/978-0-387-78151-8_22
[4]   GEOGRAPHIC GRADIENT IN SMALL RODENT DENSITY-FLUCTUATIONS - A STATISTICAL MODELING APPROACH [J].
BJORNSTAD, ON ;
FALCK, W ;
STENSETH, NC .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1995, 262 (1364) :127-133
[5]  
Brook BW, 2006, ECOLOGY, V87, P1445, DOI 10.1890/0012-9658(2006)87[1445:SOEFDD]2.0.CO
[6]  
2
[7]  
Brooks SP, 1998, J ROY STAT SOC D-STA, V47, P69, DOI 10.1111/1467-9884.00117
[8]   State-space models for the dynamics of wild animal populations [J].
Buckland, ST ;
Newman, KB ;
Thomas, L ;
Koesters, NB .
ECOLOGICAL MODELLING, 2004, 171 (1-2) :157-175
[9]   Population time series: Process variability, observation errors, missing values, lags, and hidden states [J].
Clark, JS ;
Bjornstad, ON .
ECOLOGY, 2004, 85 (11) :3140-3150
[10]   Bayesian Analysis of Wildlife Age-at-Harvest Data [J].
Conn, Paul B. ;
Diefenbach, Duane R. ;
Laake, Jeffrey L. ;
Ternent, Mark A. ;
White, Gary C. .
BIOMETRICS, 2008, 64 (04) :1170-1177