Improving Aboveground Forest Biomass Maps: From High-Resolution to National Scale

被引:27
作者
Durante, Pilar [1 ,2 ]
Martin-Alcon, Santiago [1 ]
Gil-Tena, Assu [1 ]
Algeet, Nur [1 ]
Luis Tome, Jose [1 ]
Recuero, Laura [3 ]
Palacios-Orueta, Alicia [3 ]
Oyonarte, Cecilio [2 ,4 ]
机构
[1] Agresta Soc Cooperat, Madrid 28012, Spain
[2] Univ Almeria, Dept Agron, Almeria 04120, Spain
[3] Univ Politecn Madrid, ETSIMFMN, Dept Sistemas & Recursos Nat, E-28040 Madrid, Spain
[4] CAESCG, Almeria 04120, Spain
关键词
mediterranean forest; climate change; ALS; MODIS; quantile regression forest; uncertainty; TERRESTRIAL ECOSYSTEMS; MODERATE RESOLUTION; INVENTORY PLOTS; CLIMATE-CHANGE; FIELD PLOTS; LAND-USE; VEGETATION; LIDAR; COVER; NDVI;
D O I
10.3390/rs11070795
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Forest aboveground biomass (AGB) estimation over large extents and high temporal resolution is crucial in managing Mediterranean forest ecosystems, which have been predicted to be very sensitive to climate change effects. Although many modeling procedures have been tested to assess forest AGB, most of them cover small areas and attain high accuracy in evaluations that are difficult to update and extrapolate without large uncertainties. In this study, focusing on the Region of Murcia in Spain (11,313 km(2)), we integrated forest AGB estimations, obtained from high-precision airborne laser scanning (ALS) data calibrated with plot-level ground-based measures and bio-geophysical spectral variables (eight different indices derived from MODIS computed at different temporal resolutions), as well as topographic factors as predictors. We used a quantile regression forest (QRF) to spatially predict biomass and the associated uncertainty. The fitted model produced a satisfactory performance (R-2 0.71 and RMSE 9.99 tha(-1)) with the normalized difference vegetation index (NDVI) as the main vegetation index, in combination with topographic variables as environmental drivers. An independent validation carried out over the final predicted biomass map showed a satisfactory statistically-robust model (R-2 0.70 and RMSE 10.25 tha(-1)), confirming its applicability at coarser resolutions.
引用
收藏
页数:20
相关论文
共 87 条
[1]   Use of Descriptors of Ecosystem Functioning for Monitoring a National Park Network: A Remote Sensing Approach [J].
Alcaraz-Segura, Domingo ;
Cabello, Javier ;
Paruelo, Jose M. ;
Delibes, Miguel .
ENVIRONMENTAL MANAGEMENT, 2009, 43 (01) :38-48
[2]   Integration of UAV, Sentinel-1, and Sentinel-2 Data for Mangrove Plantation Aboveground Biomass Monitoring in Senegal [J].
Antonio Navarro, Jose ;
Algeet, Nur ;
Fernandez-Landa, Alfredo ;
Esteban, Jessica ;
Rodriguez-Noriega, Pablo ;
Luz Guillen-Climent, Maria .
REMOTE SENSING, 2019, 11 (01)
[3]   Assessing Shifts of Mediterranean and Arid Climates Under RCP4.5 and RCP8.5 Climate Projections in Europe [J].
Barredo, Jose I. ;
Mauri, Achille ;
Caudullo, Giovanni ;
Dosio, Alessandro .
PURE AND APPLIED GEOPHYSICS, 2018, 175 (11) :3955-3971
[4]   Mapping attributes of Canada's forests at moderate resolution through kNN and MODIS imagery [J].
Beaudoin, A. ;
Bernier, P. Y. ;
Guindon, L. ;
Villemaire, P. ;
Guo, X. J. ;
Stinson, G. ;
Bergeron, T. ;
Magnussen, S. ;
Hall, R. J. .
CANADIAN JOURNAL OF FOREST RESEARCH, 2014, 44 (05) :521-532
[5]   Mapping US forest biomass using nationwide forest inventory data and moderate resolution information [J].
Blackard, J. A. ;
Finco, M. V. ;
Helmer, E. H. ;
Holden, G. R. ;
Hoppus, M. L. ;
Jacobs, D. M. ;
Lister, A. J. ;
Moisen, G. G. ;
Nelson, M. D. ;
Riemann, R. ;
Ruefenacht, B. ;
Salajanu, D. ;
Weyermann, D. L. ;
Winterberger, K. C. ;
Brandeis, T. J. ;
Czaplewski, R. L. ;
McRoberts, R. E. ;
Patterson, P. L. ;
Tymcio, R. P. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (04) :1658-1677
[6]   Modeling Mediterranean forest structure using airborne laser scanning data [J].
Bottalico, Francesca ;
Chirici, Gherardo ;
Giannini, Raffaello ;
Mele, Salvatore ;
Mura, Matteo ;
Puxeddu, Michele ;
McRobert, Ronald E. ;
Valbuena, Ruben ;
Travaglini, Davide .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2017, 57 :145-153
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]   Managing forests for climate change mitigation [J].
Canadell, Josep G. ;
Raupach, Michael R. .
SCIENCE, 2008, 320 (5882) :1456-1457
[9]   Linking global and local scales: designing dynamic assessment and management processes [J].
Cash, DW ;
Moser, SC .
GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, 2000, 10 (02) :109-120
[10]  
Chen JM, 1996, CAN J REMOTE SENS, V22, P229, DOI DOI 10.1080/07038992.1996.10855178