Drawing Cone Spherical Metrics via Strebel Differentials

被引:11
作者
Song, Jijian [1 ]
Cheng, Yiran [2 ]
Li, Bo [1 ]
Xu, Bin [1 ]
机构
[1] Chinese Acad Sci, Univ Sci & Technol China, Sch Math Sci, Wu Wen Tsun Lab Math,USTC, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
[2] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
基金
中国国家自然科学基金;
关键词
CONICAL SINGULARITIES; CONSTANT CURVATURE; MODULI SPACE; INTERSECTION THEORY; CONFORMAL METRICS; CURVES; EQUATIONS;
D O I
10.1093/imrn/rny103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cone spherical metrics are conformal metrics with constant curvature one and finitely many conical singularities on compact Riemann surfaces. By using Strebel differentials as a bridge, we construct a new class of cone spherical metrics on compact Riemann surfaces by drawing on the surfaces some class of connected metric ribbon graphs.
引用
收藏
页码:3341 / 3363
页数:23
相关论文
共 40 条
[1]  
[Anonymous], 1984, QUADRATIC DIFFERENTI
[2]  
[Anonymous], 1898, J. Math. Pures Appl.
[3]   Jenkins-Strebel differentials [J].
Arbarello, Enrico ;
Cornalba, Maurizio .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2010, 21 (02) :115-157
[4]   Supercritical Conformal Metrics on Surfaces with Conical Singularities [J].
Bartolucci, Daniele ;
De Marchis, Francesca ;
Malchiodi, Andrea .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (24) :5625-5643
[5]   A SPECIAL-CLASS OF STATIONARY FLOWS FOR 2-DIMENSIONAL EULER EQUATIONS - A STATISTICAL-MECHANICS DESCRIPTION [J].
CAGLIOTI, E ;
LIONS, PL ;
MARCHIORO, C ;
PULVIRENTI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 143 (03) :501-525
[6]   Mean field equations, hyperelliptic curves and modular forms: I [J].
Chai, Ching-Li ;
Lin, Chang-Shou ;
Wang, Chin-Lung .
CAMBRIDGE JOURNAL OF MATHEMATICS, 2015, 3 (1-2) :127-274
[7]  
Chen CC, 2004, ANN SCUOLA NORM-SCI, V3, P367
[8]   Mean Field Equation of Liouville Type with Singular Data: Topological Degree [J].
Chen, Chiun-Chuan ;
Lin, Chang-Shou .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (06) :887-947
[9]   CONFORMAL METRICS WITH CONSTANT CURVATURE ONE AND FINITELY MANY CONICAL SINGULARITIES ON COMPACT RIEMANN SURFACES [J].
Chen, Qing ;
Wang, Wei ;
Wu, Yingyi ;
Xu, Bin .
PACIFIC JOURNAL OF MATHEMATICS, 2015, 273 (01) :75-100
[10]  
Chen Z.-J., ARXIV161001787MATHAP