Integrating single-cell transcriptomic data across different conditions, technologies, and species

被引:6993
作者
Butler, Andrew [1 ,2 ]
Hoffman, Paul [1 ]
Smibert, Peter [1 ]
Papalexi, Efthymia [1 ,2 ]
Satija, Rahul [1 ,2 ]
机构
[1] New York Genome Ctr, New York, NY 10013 USA
[2] NYU, Ctr Genom & Syst Biol, New York, NY 10003 USA
关键词
RNA-SEQ DATA; GENE-EXPRESSION; STEM; MAP; CLASSIFICATION; IDENTIFICATION; VISUALIZATION; HETEROGENEITY; RESOLUTION; TISSUE;
D O I
10.1038/nbt.4096
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.
引用
收藏
页码:411 / +
页数:15
相关论文
共 71 条
  • [21] Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex
    Johnson, Matthew B.
    Wang, Peter P.
    Atabay, Kutay D.
    Murphy, Elisabeth A.
    Doan, Ryan N.
    Hecht, Jonathan L.
    Walsh, Christopher A.
    [J]. NATURE NEUROSCIENCE, 2015, 18 (05) : 637 - +
  • [22] Adjusting batch effects in microarray expression data using empirical Bayes methods
    Johnson, W. Evan
    Li, Cheng
    Rabinovic, Ariel
    [J]. BIOSTATISTICS, 2007, 8 (01) : 118 - 127
  • [23] Genome-wide RNA Tomography in the Zebrafish Embryo
    Junker, Jan Philipp
    Noel, Emily S.
    Guryev, Victor
    Peterson, Kevin A.
    Shah, Gopi
    Huisken, Jan
    McMahon, Andrew P.
    Berezikov, Eugene
    Bakkers, Jeroen
    van Oudenaarden, Alexander
    [J]. CELL, 2014, 159 (03) : 662 - 675
  • [24] Multiplexed droplet single-cell RNA-sequencing using natural genetic variation
    Kang, Hyun Min
    Subramaniam, Meena
    Targ, Sasha
    Michelle Nguyen
    Maliskova, Lenka
    McCarthy, Elizabeth
    Wan, Eunice
    Wong, Simon
    Byrnes, Lauren
    Lanata, Cristina M.
    Gate, Rachel E.
    Mostafavi, Sara
    Marson, Alexander
    Zaitlen, Noah
    Criswell, Lindsey A.
    Ye, Chun Jimmie
    [J]. NATURE BIOTECHNOLOGY, 2018, 36 (01) : 89 - +
  • [25] CANONICAL ANALYSIS OF SEVERAL SETS OF VARIABLES
    KETTENRING, JR
    [J]. BIOMETRIKA, 1971, 58 (03) : 433 - +
  • [26] Kharchenko PV, 2014, NAT METHODS, V11, P740, DOI [10.1038/nmeth.2967, 10.1038/NMETH.2967]
  • [27] Kiselev VY, 2017, NAT METHODS, V14, P483, DOI [10.1038/NMETH.4236, 10.1038/nmeth.4236]
  • [28] Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells
    Klein, Allon M.
    Mazutis, Linas
    Akartuna, Ilke
    Tallapragada, Naren
    Veres, Adrian
    Li, Victor
    Peshkin, Leonid
    Weitz, David A.
    Kirschner, Marc W.
    [J]. CELL, 2015, 161 (05) : 1187 - 1201
  • [29] Enrichr: a comprehensive gene set enrichment analysis web server 2016 update
    Kuleshov, Maxim V.
    Jones, Matthew R.
    Rouillard, Andrew D.
    Fernandez, Nicolas F.
    Duan, Qiaonan
    Wang, Zichen
    Koplev, Simon
    Jenkins, Sherry L.
    Jagodnik, Kathleen M.
    Lachmann, Alexander
    McDermott, Michael G.
    Monteiro, Caroline D.
    Gundersen, Gregory W.
    Ma'ayan, Avi
    [J]. NUCLEIC ACIDS RESEARCH, 2016, 44 (W1) : W90 - W97
  • [30] Nuclear RNA-seq of single neurons reveals molecular signatures of activation (vol 7, 11022, 2016)
    Lacar, Benjamin
    Linker, Sara B.
    Jaeger, Baptiste N.
    Krishnaswami, Suguna Rani
    Barron, Jerika J.
    Kelder, Martijn J. E.
    Parylak, Sarah L.
    Paquola, Apua C. M.
    Venepally, Pratap
    Novotny, Mark
    O'Connor, Carolyn
    Fitzpatrick, Conor
    Erwin, Jennifer A.
    Hsu, Jonathan Y.
    Husband, David
    McConnell, Michael J.
    Lasken, Roger
    Gage, Fred H.
    [J]. NATURE COMMUNICATIONS, 2017, 8