Integrating single-cell transcriptomic data across different conditions, technologies, and species

被引:6993
作者
Butler, Andrew [1 ,2 ]
Hoffman, Paul [1 ]
Smibert, Peter [1 ]
Papalexi, Efthymia [1 ,2 ]
Satija, Rahul [1 ,2 ]
机构
[1] New York Genome Ctr, New York, NY 10013 USA
[2] NYU, Ctr Genom & Syst Biol, New York, NY 10003 USA
关键词
RNA-SEQ DATA; GENE-EXPRESSION; STEM; MAP; CLASSIFICATION; IDENTIFICATION; VISUALIZATION; HETEROGENEITY; RESOLUTION; TISSUE;
D O I
10.1038/nbt.4096
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.
引用
收藏
页码:411 / +
页数:15
相关论文
共 71 条
  • [1] High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin
    Achim, Kaia
    Pettit, Jean-Baptiste
    Saraiva, Luis R.
    Gavriouchkina, Daria
    Larsson, Tomas
    Arendt, Detlev
    Marioni, John C.
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (05) : 503 - U215
  • [2] Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential:: A revised road map for adult blood lineage commitment
    Adolfsson, J
    Månsson, R
    Buza-Vidas, N
    Hultquist, A
    Liuba, K
    Jensen, CT
    Bryder, D
    Yang, LP
    Borge, OJ
    Thoren, LAM
    Anderson, K
    Sitnicka, E
    Sasaki, Y
    Sigvardsson, M
    Jacobsen, SEW
    [J]. CELL, 2005, 121 (02) : 295 - 306
  • [3] [Anonymous], 1994, USING DYNAMIC TIME W
  • [4] [Anonymous], S ORIGINAL TREVOR HA
  • [5] [Anonymous], DIFFUSIONMAP DIFFUSI
  • [6] Baglama Jim., 2005, SIAM J. Sci. Comput
  • [7] A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure
    Baron, Maayan
    Veres, Adrian
    Wolock, Samuel L.
    Faust, Aubrey L.
    Gaujoux, Renaud
    Vetere, Amedeo
    Ryu, Jennifer Hyoje
    Wagner, Bridget K.
    Shen-Orr, Shai S.
    Klein, Allon M.
    Melton, Douglas A.
    Yanai, Itai
    [J]. CELL SYSTEMS, 2016, 3 (04) : 346 - +
  • [8] Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development
    Bendall, Sean C.
    Davis, Kara L.
    Amir, El-ad David
    Tadmor, Michelle D.
    Simonds, Erin F.
    Chen, Tiffany J.
    Shenfeld, Daniel K.
    Nolan, Garry P.
    Pe'er, Dana
    [J]. CELL, 2014, 157 (03) : 714 - 725
  • [9] Defining the three cell lineages of the human blastocyst by single-cell RNA-seq (vol 142, pg 3151, 2015)
    Blakeley, Paul
    Fogarty, Norah M. E.
    del Valle, Ignacio
    Wamaitha, Sissy E.
    Hu, Tim Xiaoming
    Elder, Kay
    Snell, Philip
    Christie, Leila
    Robson, Paul
    Niakan, Kathy K.
    [J]. DEVELOPMENT, 2015, 142 (20): : 3613 - 3613
  • [10] A survey of best practices for RNA-seq data analysis
    Conesa, Ana
    Madrigal, Pedro
    Tarazona, Sonia
    Gomez-Cabrero, David
    Cervera, Alejandra
    McPherson, Andrew
    Szczesniak, Michal Wojciech
    Gaffney, Daniel J.
    Elo, Laura L.
    Zhang, Xuegong
    Mortazavi, Ali
    [J]. GENOME BIOLOGY, 2016, 17