In vivo visualization of the PICA perfusion territory with super-selective pseudo-continuous arterial spin labeling MRI

被引:15
|
作者
Hartkamp, Nolan S. [1 ]
De Cocker, Laurens J. [1 ]
Helle, Michael [2 ]
van Osch, Matthias J. P. [3 ]
Kappelle, L. Jaap [4 ]
Bokkers, Reinoud P. H. [1 ]
Hendrikse, Jeroen [1 ]
机构
[1] Univ Med Ctr Utrecht, Dept Radiol, NL-3508 GA Utrecht, Netherlands
[2] Philips Technol GmbH, Innovat Technol, Res Labs, Hamburg, Germany
[3] Univ Med Ctr Utrecht, Dept Radiol, CJ Gorter Ctr High Field MRI, NL-3508 GA Utrecht, Netherlands
[4] Univ Med Ctr Utrecht, Dept Neurol, Rudolf Magnus Inst Neurosci, NL-3508 GA Utrecht, Netherlands
关键词
MRI; ASL; Cerebellar; PICA; Perfusion; CEREBELLAR INFARCTS; CAROTID-ARTERY; BRAIN; MECHANISMS; INSIGHTS;
D O I
10.1016/j.neuroimage.2013.06.070
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In this work a method is described to discern the perfusion territories in the cerebellum that are exclusively supplied by either or both vertebral arteries. In normal vascular anatomy the posterior inferior cerebellar artery (PICA) is supplied exclusively by its ipsilateral vertebral artery. The perfusion territories of the vertebral arteries were determined in 14 healthy subjects by means of a super-selective pseudo-continuous ASL sequence on a 3 T MRI scanner. Data is presented to show the feasibility of determining the PICA perfusion territory. In 10 subjects it was possible to accurately determine both PICA perfusion territories. In two subjects it was possible to determine the perfusion territory of one PICA. Examples in which it was not possible to accurately determine the PICA territory are also given. Additionally, the high variability of the extent of the PICA territory is illustrated using a statistical map. The posterior surface of the cerebellum is entirely supplied by the PICA in six subjects. The most posterior part of the superior surface is supplied by the PICA in eight subjects, and the inferior half of the anterior surface in six subjects. The inferior part of the vermis is supplied by the PICA in all subjects. Two subjects were found with interhemispheric blood flow to both tonsils from one PICA without contribution from the contralateral PICA. With the method as presented, clinicians may in the future accurately classify cerebellar infarcts according to affected perfusion territories, which might be helpful in the decision whether a stenosis should be considered symptomatic. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:58 / 65
页数:8
相关论文
共 50 条
  • [21] Cerebral Blood Flow Quantification in Swine Using Pseudo-Continuous Arterial Spin Labeling
    Johnston, Megan E.
    Zheng, Zhenlin
    Maldjian, Joseph A.
    Whitlow, Christopher T.
    Morykwas, Michael J.
    Jung, Youngkyoo
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2013, 38 (05) : 1111 - 1118
  • [22] Comparison of Three-Dimensional Pseudo-continuous Arterial Spin Labeling Perfusion Imaging With Gradient-Echo and Spin-Echo Dynamic Susceptibility Contrast MRI
    Wong, Alex M.
    Yan, Feng-Xian
    Liu, Ho-Ling
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2014, 39 (02) : 427 - 433
  • [23] Reliability and Reproducibility of Hadamard Encoded Pseudo-Continuous Arterial Spin Labeling in Healthy Elderly
    Neumann, Katja
    Schidlowski, Martin
    Guenther, Matthias
    Stoecker, Tony
    Duezel, Emrah
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [24] Reproducibility of multiphase pseudo-continuous arterial spin labeling and the effect of post-processing analysis methods
    Fazlollahi, Amir
    Bourgeat, Pierrick
    Liang, Xiaoyun
    Meriaudeau, Fabrice
    Connelly, Alan
    Salvado, Olivier
    Calamante, Fernando
    NEUROIMAGE, 2015, 117 : 191 - 201
  • [25] Repeatability of perfusion measurements in adult gliomas using pulsed and pseudo-continuous arterial spin labelling MRI
    Alsaedi, Amirah Faisal
    Thomas, David Lee
    De Vita, Enrico
    Panovska-Griffiths, Jasmina
    Bisdas, Sotirios
    Golay, Xavier
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2022, 35 (01) : 113 - 125
  • [26] Test-retest reliability and reproducibility of long-label pseudo-continuous arterial spin labeling
    Lin, Tianye
    Qu, Jianxun
    Zuo, Zhentao
    Fan, Xiaoyuan
    You, Hui
    Feng, Feng
    MAGNETIC RESONANCE IMAGING, 2020, 73 : 111 - 117
  • [27] Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging
    Jarnum, Hanna
    Steffensen, Elena G.
    Knutsson, Linda
    Frund, Ernst-Torben
    Simonsen, Carsten Wiberg
    Lundbye-Christensen, Soren
    Shankaranarayanan, Ajit
    Alsop, David C.
    Jensen, Finn Taagehoj
    Larsson, Elna-Marie
    NEURORADIOLOGY, 2010, 52 (04) : 307 - 317
  • [28] Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging
    Hanna Järnum
    Elena G. Steffensen
    Linda Knutsson
    Ernst-Torben Fründ
    Carsten Wiberg Simonsen
    Søren Lundbye-Christensen
    Ajit Shankaranarayanan
    David C. Alsop
    Finn Taagehøj Jensen
    Elna-Marie Larsson
    Neuroradiology, 2010, 52 : 307 - 317
  • [29] Optimization of adiabatic pulses for pulsed arterial spin labeling at 7 tesla: Comparison with pseudo-continuous arterial spin labeling
    Wang, Kai
    Shao, Xingfeng
    Yan, Lirong
    Ma, Samantha J.
    Jin, Jin
    Wang, Danny J. J.
    MAGNETIC RESONANCE IN MEDICINE, 2021, 85 (06) : 3227 - 3240
  • [30] Characterization of Skull Base Lesions Using Pseudo-Continuous Arterial Spin Labeling
    B. Geerts
    D. Leclercq
    S. Tezenas du Montcel
    B. Law-ye
    S. Gerber
    D. Bernardeschi
    D. Galanaud
    D. Dormont
    N. Pyatigorskaya
    Clinical Neuroradiology, 2019, 29 : 75 - 86