In 1920, Ramanujan wrote to Hardy about his discovery of the mock theta functions. In the years since, there has been much work in understanding the transformation properties and asymptotic nature of these functions. Recently, Zwegers proved a relationship between mock theta functions and vector-valued modular forms, and Bringmann and Ono used the theory of Maass forms and Poincare series to prove a conjecture of Andrews, yielding an exact formula for the coefficients of the f(q) mock theta function. Here we build upon these results, using the theory of vector-valued modular forms and Poincare series to prove an exact formula for the coefficients of the omega(q) mock theta function.
机构:
Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, 21 Nanyang Link, Singapore 637371, SingaporeNanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, 21 Nanyang Link, Singapore 637371, Singapore
Chan, Song Heng
Hong, Nankun
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, 21 Nanyang Link, Singapore 637371, SingaporeNanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, 21 Nanyang Link, Singapore 637371, Singapore
Hong, Nankun
Jerry
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, 21 Nanyang Link, Singapore 637371, SingaporeNanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, 21 Nanyang Link, Singapore 637371, Singapore
Jerry
Lovejoy, Jeremy
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris, CNRS, Batiment Sophie Germain Case Courier 7014, F-75205 Paris 13, FranceNanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, 21 Nanyang Link, Singapore 637371, Singapore