THE COEFFICIENTS OF THE ω(q) MOCK THETA FUNCTION

被引:9
|
作者
Garthwaite, Sharon Anne [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
Mock theta functions; Poincare series; modular forms;
D O I
10.1142/S1793042108001869
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1920, Ramanujan wrote to Hardy about his discovery of the mock theta functions. In the years since, there has been much work in understanding the transformation properties and asymptotic nature of these functions. Recently, Zwegers proved a relationship between mock theta functions and vector-valued modular forms, and Bringmann and Ono used the theory of Maass forms and Poincare series to prove a conjecture of Andrews, yielding an exact formula for the coefficients of the f(q) mock theta function. Here we build upon these results, using the theory of vector-valued modular forms and Poincare series to prove an exact formula for the coefficients of the omega(q) mock theta function.
引用
收藏
页码:1027 / 1042
页数:16
相关论文
共 50 条
  • [1] Congruences for the coefficients of the mock theta function (q)
    Zhang, Wenlong
    Shi, Ji
    RAMANUJAN JOURNAL, 2019, 49 (02) : 257 - 267
  • [2] Overpartitions related to the mock theta function ω(q)
    Andrews, George E.
    Dixit, Atul
    Schultz, Daniel
    Yee, Ae Ja
    ACTA ARITHMETICA, 2017, 181 (03) : 253 - 286
  • [3] Congruences for the Fourier coefficients of the Mathieu mock theta function
    Miezaki, Tsuyoshi
    Waldherr, Matthias
    JOURNAL OF NUMBER THEORY, 2015, 148 : 451 - 462
  • [4] On the Mathieu mock theta function
    Miezaki, Tsuyoshi
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2012, 88 (02) : 28 - 30
  • [5] New congruences modulo 9 for the coefficients of Gordon-McIntosh's mock theta function ξ(q)
    Yao, Olivia X. M.
    QUAESTIONES MATHEMATICAE, 2024, 47 (02) : 239 - 248
  • [6] On recursions for coefficients of mock theta functions
    Chan S.H.
    Mao R.
    Osburn R.
    Research in Number Theory, 1 (1)
  • [7] Parity of coefficients of mock theta functions
    Wang, Liuquan
    JOURNAL OF NUMBER THEORY, 2021, 229 : 53 - 99
  • [8] Quantum q-series and mock theta functions
    Folsom, Amanda
    Metacarpa, David
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2024, 11 (02)
  • [9] Theta lifts for Lorentzian lattices and coefficients of mock theta functions
    Bruinier, Jan Hendrik
    Schwagenscheidt, Markus
    MATHEMATISCHE ZEITSCHRIFT, 2021, 297 (3-4) : 1633 - 1657
  • [10] Arithmetic properties for a partition function related to the Ramanujan/Watson mock theta function ω(q)
    Xia, Ernest X. W.
    RAMANUJAN JOURNAL, 2018, 46 (02) : 545 - 562