SMITag: a social network for semantic annotation of medical images

被引:0
作者
Federico, Lopez [1 ]
Nestor, Diaz [1 ]
Oscar, Ceballos [1 ]
机构
[1] Univ Valle Sede Tulua, Programa Ingn Sistemas, Tulua 282013, Valle Del Cauca, Colombia
来源
2012 XXXVIII CONFERENCIA LATINOAMERICANA EN INFORMATICA (CLEI) | 2012年
关键词
semantic annotation; DICOM; social network;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Medical images contains valuable information that is not explicit and readable for the machine. For instance, an image may contain information about the anatomy and abnormal structures. However, this kind of information can only be interpreted by a medical domain expert. This paper proposes SMITag, a collaborative semantic annotation tool for medical images that combines features of a DICOM Viewer together with a social network, so that the consensus of domain experts makes easier semantic enrichment tasks, sorting and image retrieval.
引用
收藏
页数:7
相关论文
共 18 条
[11]  
Mejino Jose L V, 2008, AMIA Annu Symp Proc, P465
[12]  
Möller M, 2009, LECT NOTES COMPUT SC, V5554, P21, DOI 10.1007/978-3-642-02121-3_6
[13]  
PASSANT A, 2008, P WWW 2008 WORKSH LI
[14]  
Robert C. D. M., 1992, RADIOGRAPCHIS, P127
[15]  
Rubin DDB, 2007, FRONT COMPUT NEUROSC, V1, DOI [10.3389/neuro.10.007.2007, 10.3389/neuro.10/007.2007]
[16]  
Rubin Daniel L, 2008, AMIA Annu Symp Proc, P626
[17]  
STEVENS RW, 1994, ADDISON WESLEY PROFE, V1
[18]  
Tudorache T., 2008, WEB PROTEGE LIGHTWEI, V432