Density functional characterization of Bi-based photocatalysts: BiTao4 Bi4Ta2O11 and Bi7Ta3O18

被引:36
作者
Gao, Juan [1 ]
Zeng, Wei [2 ]
Tang, Bin [3 ]
Zhong, Mi [1 ]
Liu, Qi-Jun [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Phys Sci & Technol, Minist Educ China, Key Lab Adv Technol Mat, Chengdu 610031, Peoples R China
[2] Chengdu Univ Tradit Chinese Med, Coll Med Technol, Teaching & Res Grp Chem, Chengdu 610075, Peoples R China
[3] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
BiTaO4; Bi4Ta2O11; Bi7Ta3O18; Photocatalysis; First-principles calculations;
D O I
10.1016/j.mssp.2020.105447
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Using density-functional theory (DFT) calculations, we make a comparative study for the structural, electronic, and optical properties and photocatalysis of triclinic BiTaO4, orthorhombic BiTaO4, triclinic Bi4Ta2O11, and triclinic Bi7Ta3O18. We predict the photocatalytic capacity by analyzing the band edge position and light ab-sorption. Besides, we calculate the effective masses of holes and electrons to compare the carriers' mobility of the four bismuth tantalates. The optimized lattice parameters are obtained and crystal structures are analyzed. Electronic properties are studied by analyzing the band structures, partial density of state (PDOS), charge density, Mulliken population, and the hybridization intensity of Bi 6s-O 2p in the valence band maximum (VBM). Optical properties are investigated by calculating the optical absorption coefficient, optical refractive index, optical extinction coefficient, and dielectric function. By comparing the relative ratio of effective mass, we found that triclinic BiTaO4 and triclinic Bi7Ta3O18 not only have excellent mobility of carriers but also have excellent separation of photoexcited electron-hole pairs. Because of desirable mobility and separation of carriers, some absorption in visible light, and suitable redox potential, the four bismuth tantalates are predicted as promising catalyst candidates.
引用
收藏
页数:9
相关论文
共 69 条
  • [61] Uddin J., Scuseria G.E., Phys. Rev. B, 74, (2006)
  • [62] Heyd J., Peralta J.E., Scuseria G.E., Martin R.L., J. Chem. Phys., 123, (2005)
  • [63] Krukau A.V., Vydrov O.A., Izmaylov A.F., Scuseria G.E., J. Chem. Phys., 125, (2006)
  • [64] Peralta J.E., Heyd J., Scuseria G.E., Martin R.L., Phys. Rev. B, 74, (2006)
  • [65] Li W., Walther C.F.J., Kuc A., Heine T., J. Chem. Theor. Comput., 9, (2013)
  • [66] Wadnerkar N., English N.J., Comput. Mater. Sci., 74, (2013)
  • [67] Thulin L., Guerra J., Phys. Rev. B, 77, (2008)
  • [68] Ali M.O., Elementary Solid State Physics: Principles and Applications, (1993)
  • [69] Ricci F., Chen W., Aydemir U., Snyder G.J., Rignanese G.M., Jain A., Hautier G., Scientific data, 4, (2017)