Adaptive Kaczmarz method for image reconstruction in electrical impedance tomography

被引:13
作者
Li, Taoran [1 ]
Kao, Tzu-Jen [2 ]
Isaacson, David [3 ]
Newell, Jonathan C. [4 ]
Saulnier, Gary J. [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Elect Engn, Troy, NY 12180 USA
[2] GE Global Res Ctr, Schenectady, NY 12309 USA
[3] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
[4] Rensselaer Polytech Inst, Dept Biomed Engn, Troy, NY 12180 USA
关键词
electrical impedance tomography; image reconstruction; optimal current pattern; ORDERED SUBSETS; ALGORITHMS;
D O I
10.1088/0967-3334/34/6/595
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We present an adaptive Kaczmarz method for solving the inverse problem in electrical impedance tomography and determining the conductivity distribution inside an object from electrical measurements made on the surface. To best characterize an unknown conductivity distribution and avoid inverting the Jacobian-related term J(T) J which could be expensive in terms of computation cost and memory in large-scale problems, we propose solving the inverse problem by applying the optimal current patterns for distinguishing the actual conductivity from the conductivity estimate between each iteration of the block Kaczmarz algorithm. With a novel subset scheme, the memory-efficient reconstruction algorithm which appropriately combines the optimal current pattern generation with the Kaczmarz method can produce more accurate and stable solutions adaptively as compared to traditional Kaczmarz- and Gauss-Newton-type methods. Choices of initial current pattern estimates are discussed in this paper. Several reconstruction image metrics are used to quantitatively evaluate the performance of the simulation results.
引用
收藏
页码:595 / 608
页数:14
相关论文
共 26 条
  • [1] Uses and abuses of EIDORS: an extensible software base for EIT
    Adler, A
    Lionheart, WRB
    [J]. PHYSIOLOGICAL MEASUREMENT, 2006, 27 (05) : S25 - S42
  • [2] GREIT: a unified approach to 2D linear EIT reconstruction of lung images
    Adler, Andy
    Arnold, John H.
    Bayford, Richard
    Borsic, Andrea
    Brown, Brian
    Dixon, Paul
    Faes, Theo J. C.
    Frerichs, Inez
    Gagnon, Herve
    Gaerber, Yvo
    Grychtol, Bartlomiej
    Hahn, Guenter
    Lionheart, William R. B.
    Malik, Anjum
    Patterson, Robert P.
    Stocks, Janet
    Tizzard, Andrew
    Weiler, Norbert
    Wolf, Gerhard K.
    [J]. PHYSIOLOGICAL MEASUREMENT, 2009, 30 (06) : S35 - S55
  • [3] [Anonymous], 2001, Mathematical methods in image reconstruction
  • [4] Byrne C, 2009, INT T OPER RES, V16, P427, DOI 10.1111/j.1475-3995.2008.00683.x
  • [5] Block-iterative methods for image reconstruction from projections
    Byrne, CL
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1996, 5 (05) : 792 - 794
  • [6] Cheney M, 1990, Int J Imaging Syst Technol, V2, P66, DOI 10.1002/ima.1850020203
  • [7] On optimal current patterns for electrical impedance tomography
    Demidenko, E
    Hartov, A
    Soni, N
    Paulsen, KD
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2005, 52 (02) : 238 - 248
  • [8] A REAL-TIME ELECTRICAL-IMPEDANCE TOMOGRAPH
    EDIC, PM
    SAULNIER, GJ
    NEWELL, JC
    ISAACSON, D
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1995, 42 (09) : 849 - 859
  • [9] EGGERMONT PPB, 1981, LINEAR ALGEBRA APPL, V40, P37, DOI 10.1016/0024-3795(81)90139-7
  • [10] BLOCK-ITERATIVE METHODS FOR CONSISTENT AND INCONSISTENT LINEAR-EQUATIONS
    ELFVING, T
    [J]. NUMERISCHE MATHEMATIK, 1980, 35 (01) : 1 - 12