BMOG: Boosted Gaussian Mixture Model with Controlled Complexity

被引:21
作者
Martins, Isabel [1 ,2 ]
Carvalho, Pedro [2 ,3 ]
Corte-Real, Luis [3 ,4 ]
Luis Alba-Castro, Jose [1 ]
机构
[1] Univ Vigo, Vigo, Spain
[2] Polytech Inst Porto, Sch Engn, Porto, Portugal
[3] INESC TEC, Porto, Portugal
[4] Univ Porto, Fac Engn, Porto, Portugal
来源
PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2017) | 2017年 / 10255卷
关键词
GMM; MOG; Background Subtraction; Change detection; BACKGROUND SUBTRACTION;
D O I
10.1007/978-3-319-58838-4_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Developing robust and universal methods for unsupervised segmentation of moving objects in video sequences has proved to be a hard and challenging task. The best solutions are, in general, computationally heavy preventing their use in real-time applications. This research addresses this problem by proposing a robust and computationally efficient method, BMOG, that significantly boosts the performance of the widely used MOG2 method. The complexity of BMOG is kept low, proving its suitability for real-time applications. The proposed solution explores a novel classification mechanism that combines color space discrimination capabilities with hysteresis and a dynamic learning rate for background model update.
引用
收藏
页码:50 / 57
页数:8
相关论文
共 10 条
  • [1] Moving Object Detection using Lab2000HL Color Space with Spatial and Temporal Smoothing
    Balcilar, Muhammet
    Amasyali, M. Fatih
    Sonmez, A. Coskun
    [J]. APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (04): : 1755 - 1766
  • [2] Traditional and recent approaches in background modeling for foreground detection: An overview
    Bouwmans, Thierry
    [J]. COMPUTER SCIENCE REVIEW, 2014, 11-12 : 31 - 66
  • [3] Detecting moving objects, ghosts, and shadows in video streams
    Cucchiara, R
    Grana, C
    Piccardi, M
    Prati, A
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (10) : 1337 - 1342
  • [4] Toward a Unified Color Space for Perception-Based Image Processing
    Lissner, Ingmar
    Urban, Philipp
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (03) : 1153 - 1168
  • [5] A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos
    Sobral, Andrews
    Vacavant, Antoine
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2014, 122 : 4 - 21
  • [6] SuBSENSE: A Universal Change Detection Method With Local Adaptive Sensitivity
    St-Charles, Pierre-Luc
    Bilodeau, Guillaume-Alexandre
    Bergevin, Robert
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (01) : 359 - 373
  • [7] Stauffer C., 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), P246, DOI 10.1109/CVPR.1999.784637
  • [8] Region-based Mixture of Gaussians modelling for foreground detection in dynamic scenes
    Varadarajan, Sriram
    Miller, Paul
    Zhou, Huiyu
    [J]. PATTERN RECOGNITION, 2015, 48 (11) : 3488 - 3503
  • [9] CDnet 2014: An Expanded Change Detection Benchmark Dataset
    Wang, Yi
    Jodoin, Pierre-Marc
    Porikli, Fatih
    Konrad, Janusz
    Benezeth, Yannick
    Ishwar, Prakash
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2014, : 393 - +
  • [10] Efficient adaptive density estimation per image pixel for the task of background subtraction
    Zivkovic, Z
    van der Heijden, F
    [J]. PATTERN RECOGNITION LETTERS, 2006, 27 (07) : 773 - 780