BMOG: Boosted Gaussian Mixture Model with Controlled Complexity

被引:21
作者
Martins, Isabel [1 ,2 ]
Carvalho, Pedro [2 ,3 ]
Corte-Real, Luis [3 ,4 ]
Luis Alba-Castro, Jose [1 ]
机构
[1] Univ Vigo, Vigo, Spain
[2] Polytech Inst Porto, Sch Engn, Porto, Portugal
[3] INESC TEC, Porto, Portugal
[4] Univ Porto, Fac Engn, Porto, Portugal
来源
PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2017) | 2017年 / 10255卷
关键词
GMM; MOG; Background Subtraction; Change detection; BACKGROUND SUBTRACTION;
D O I
10.1007/978-3-319-58838-4_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Developing robust and universal methods for unsupervised segmentation of moving objects in video sequences has proved to be a hard and challenging task. The best solutions are, in general, computationally heavy preventing their use in real-time applications. This research addresses this problem by proposing a robust and computationally efficient method, BMOG, that significantly boosts the performance of the widely used MOG2 method. The complexity of BMOG is kept low, proving its suitability for real-time applications. The proposed solution explores a novel classification mechanism that combines color space discrimination capabilities with hysteresis and a dynamic learning rate for background model update.
引用
收藏
页码:50 / 57
页数:8
相关论文
共 10 条
[1]   Moving Object Detection using Lab2000HL Color Space with Spatial and Temporal Smoothing [J].
Balcilar, Muhammet ;
Amasyali, M. Fatih ;
Sonmez, A. Coskun .
APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (04) :1755-1766
[2]   Traditional and recent approaches in background modeling for foreground detection: An overview [J].
Bouwmans, Thierry .
COMPUTER SCIENCE REVIEW, 2014, 11-12 :31-66
[3]   Detecting moving objects, ghosts, and shadows in video streams [J].
Cucchiara, R ;
Grana, C ;
Piccardi, M ;
Prati, A .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (10) :1337-1342
[4]   Toward a Unified Color Space for Perception-Based Image Processing [J].
Lissner, Ingmar ;
Urban, Philipp .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (03) :1153-1168
[5]   A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos [J].
Sobral, Andrews ;
Vacavant, Antoine .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2014, 122 :4-21
[6]   SuBSENSE: A Universal Change Detection Method With Local Adaptive Sensitivity [J].
St-Charles, Pierre-Luc ;
Bilodeau, Guillaume-Alexandre ;
Bergevin, Robert .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (01) :359-373
[7]  
Stauffer C., 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), P246, DOI 10.1109/CVPR.1999.784637
[8]   Region-based Mixture of Gaussians modelling for foreground detection in dynamic scenes [J].
Varadarajan, Sriram ;
Miller, Paul ;
Zhou, Huiyu .
PATTERN RECOGNITION, 2015, 48 (11) :3488-3503
[9]   CDnet 2014: An Expanded Change Detection Benchmark Dataset [J].
Wang, Yi ;
Jodoin, Pierre-Marc ;
Porikli, Fatih ;
Konrad, Janusz ;
Benezeth, Yannick ;
Ishwar, Prakash .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2014, :393-+
[10]   Efficient adaptive density estimation per image pixel for the task of background subtraction [J].
Zivkovic, Z ;
van der Heijden, F .
PATTERN RECOGNITION LETTERS, 2006, 27 (07) :773-780