A subclass of the Cowen-Douglas class and similarity

被引:3
作者
Ji, Kui [1 ]
Kwon, Hyun-Kyoung [2 ]
Sarkar, Jaydeb [3 ]
Xu, Jing [1 ]
机构
[1] Hebei Normal Univ, Dept Math, Shijiazhuang 050016, Hebei, Peoples R China
[2] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
[3] Indian Stat Inst, Stat & Math Unit, Bangalore 560059, India
基金
中国国家自然科学基金;
关键词
Cowen-Douglas operator; curvature; eigenvector bundle; holomorphic frame; similarity; QUOTIENT HILBERT MODULES; CURVATURE; HYPERCONTRACTIONS; ALGEBRAS; GEOMETRY; FORMULAS; TRACE;
D O I
10.1002/mana.202000326
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a subclass of the Cowen-Douglas class in which the problem of deciding whether two operators are similar becomes more manageable. A similarity criterion for Cowen-Douglas operators is known to be dependent on the trace of the curvature of the corresponding eigenvector bundles. Unless the given eignvector bundle is a line bundle, the computation of the curvature, in general, is not so simple as one might hope. By using a structure theorem on Cowen-Douglas operators, we reduce the problem of finding the trace of the curvature by looking at the curvatures of the associated line bundles. Several questions related to the similarity problem are also taken into account.
引用
收藏
页码:2197 / 2222
页数:26
相关论文
共 24 条
  • [11] The trace of the curvature determines similarity
    Hou, Yingli
    Ji, Kui
    Kwon, Hyun-Kyoung
    [J]. STUDIA MATHEMATICA, 2017, 236 (02) : 193 - 200
  • [12] Ji K., P IWOTA 2018 DOUGLAS
  • [13] Ji K., GEOMETRIC SIMILARITY
  • [14] Similarity of quotient Hilbert modules in the Cowen-Douglas class
    Ji, Kui
    Sarkar, Jaydeb
    [J]. EUROPEAN JOURNAL OF MATHEMATICS, 2019, 5 (04) : 1331 - 1351
  • [15] Ji K, 2019, COMPLEX ANAL OPER TH, V13, P1609, DOI 10.1007/s11785-018-00888-6
  • [16] Rigidity of the flag structure for a class of Cowen-Douglas operators
    Ji, Kui
    Jiang, Chunlan
    Keshari, Dinesh Kumar
    Misra, Gadadhar
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (07) : 2899 - 2932
  • [17] Flag structure for operators in the Cowen-Douglas class
    Ji, Kui
    Jiang, Chunlan
    Keshari, Dinesh Kumar
    Misra, Gadadhar
    [J]. COMPTES RENDUS MATHEMATIQUE, 2014, 352 (06) : 511 - 514
  • [18] K-group and similarity classification of operators
    Jiang, CL
    Guo, XZ
    Ji, K
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 225 (01) : 167 - 192
  • [19] Trace Formulae for Curvature of Jet Bundles over Planar Domains
    Keshari, Dinesh Kumar
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (08) : 1723 - 1740
  • [20] Koranyi A., 2009, MULTIPLICITY FREE HO