The Ramsey number of loose cycles versus cliques

被引:3
作者
Meroueh, Ares [1 ]
机构
[1] Ctr Math Sci, Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge CB3 0WB, England
基金
英国工程与自然科学研究理事会;
关键词
loose cycle; Ramsey number; INDEPENDENCE NUMBER; HYPERGRAPHS; BOUNDS; GRAPH;
D O I
10.1002/jgt.22387
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R(C-l(r), K-n(r)) be the Ramsey number of an r-uniform loose cycle of length l versus an r-uniform clique of order n. Kostochka et al. showed that for each fixed r >= 3, the order of magnitude of R(C-3(r), K-n(r)) is n(3/2) up to a polylogarithmic factor in n. They conjectured that for each r >= 3 we have R(C-5(r), K-n(r)) = O(n(5/4)). We prove that R(C-5(3), K-n(3)) = O(n(4/3)), and more generally for every l >= 3 that R(C-l(3), K-n(3)) = O(n(1+1/left perpendiclaur (1+1)/2 right perpendicular)). We also prove that for every l >= 5 and r >= 4, R(C-l(r), K-n(r)) = O(n(1+1/left perpendiclaur) l/2 (right perpendiclaur)) if l is odd, which improves upon the result of Collier-Cartaino et al. who proved that for every r >= 3 and l >= 4 we have R(C-l(r), K-n(r)) = O(n1+1/((left perpendiclaur) l/2 (right perpendiclaur) -1).
引用
收藏
页码:172 / 188
页数:17
相关论文
共 26 条
  • [1] A NOTE ON RAMSEY NUMBERS
    AJTAI, M
    KOMLOS, J
    SZEMEREDI, E
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1980, 29 (03) : 354 - 360
  • [2] Bohman T., 2013, Centro di Ricerca Matematica Ennio De Giorgi Series, P489
  • [3] The early evolution of the H-free process
    Bohman, Tom
    Keevash, Peter
    [J]. INVENTIONES MATHEMATICAE, 2010, 181 (02) : 291 - 336
  • [4] Pentagons vs. triangles
    Bollobas, Bela
    Gyori, Ervin
    [J]. DISCRETE MATHEMATICS, 2008, 308 (19) : 4332 - 4336
  • [5] Asymptotic bounds for some bipartite graph: complete graph Ramsey numbers
    Caro, Y
    Li, YS
    Rousseau, CC
    Zhang, YM
    [J]. DISCRETE MATHEMATICS, 2000, 220 (1-3) : 51 - 56
  • [6] Linear Turan Numbers of Linear Cycles and Cycle-Complete Ramsey Numbers
    Collier-Cartaino, Clayton
    Graber, Nathan
    Jiang, Tao
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2018, 27 (03) : 358 - 386
  • [7] Erdos P., 1975, INFINITE FINITE SETS
  • [8] Erdos P., 1960, Journal of the London Mathematical Society, V35, P85
  • [9] Erds P., 1984, Proceedings of the International Congress of Mathematicians, V1, P51
  • [10] FizPontiveros G, 2013, TRIANGLE FREE PROCES