Plasma grid shape and size effects on the extraction of negative ions

被引:7
作者
Taccogna, F. [1 ]
Minelli, P. [1 ]
Capitelli, M. [1 ]
Longo, S. [1 ]
Schneider, R. [2 ]
机构
[1] Univ Bari, Ist Metodol Inorgan & Plasmi IMIP, CNR, Via Amendola 122-D, I-70126 Bari, Italy
[2] Ernst Moritz Arndt Univ Greifswald, Inst Phys, D-17487 Greifswald, Germany
来源
THIRD INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2012) | 2013年 / 1515卷
关键词
Particle-in-Cell Model; Plasma Sheath; Surface-produced negative Ion;
D O I
10.1063/1.4792764
中图分类号
O59 [应用物理学];
学科分类号
摘要
By means of a self-consistent three-dimensional particle model of the source-extraction transition region of a surface-produced negative ion source, the characteristics of negative ion transport have been revealed. It is purely electrostatic and collision-induced (charge exchange with atoms) and magnetic-induced (gyration around filter field) transport contributions play no relevant role for the H- transport. In fact, the key point is the penetration of the EG field inside the source, which helps removing negative ions produced on the surface. This study suggests that the best PG shape is characterized such to allow the extraction EG field from attaching the surface from where H- are produced and that the best aperture size is directly related to this particular shape.
引用
收藏
页码:3 / 11
页数:9
相关论文
共 13 条
[1]  
Birdsall C K., 2018, Plasma Physics via Computer Simulation
[2]   Model of an inductively coupled negative ion source: II. Application to an ITER type source [J].
Boeuf, J. P. ;
Hagelaar, G. J. M. ;
Sarrailh, P. ;
Fubiani, G. ;
Kohen, N. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2011, 20 (01)
[3]  
de Esch HPL, 2009, AIP CONF PROC, V1097, P309, DOI 10.1063/1.3112526
[4]   Negative ion RF sources for ITER NBI: status of the development and recent achievements [J].
Fantz, U. ;
Franzen, P. ;
Kraus, W. ;
Berger, M. ;
Christ-Koch, S. ;
Froeschle, M. ;
Gutser, R. ;
Heinemann, B. ;
Martens, C. ;
McNeely, P. ;
Riedl, R. ;
Speth, E. ;
Wuenderlich, D. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (12B) :B563-B580
[5]   Physical performance analysis and progress of the development of the negative ion RF source for the ITER NBI system [J].
Fantz, U. ;
Franzen, P. ;
Kraus, W. ;
Berger, M. ;
Christ-Koch, S. ;
Falter, H. ;
Froeschle, M. ;
Gutser, R. ;
Heinemann, B. ;
Martens, C. ;
McNeely, P. ;
Riedl, R. ;
Speth, E. ;
Staebler, A. ;
Wuenderlich, D. .
NUCLEAR FUSION, 2009, 49 (12)
[6]   Performance of multi-aperture grid extraction systems for an ITER-relevant RF-driven negative hydrogen ion source [J].
Franzen, P. ;
Gutser, R. ;
Fantz, U. ;
Kraus, W. ;
Falter, H. ;
Froeschle, M. ;
Heinemann, B. ;
McNeely, P. ;
Nocentini, R. ;
Riedl, R. ;
Staebler, A. ;
Wuenderlich, D. .
NUCLEAR FUSION, 2011, 51 (07)
[7]   Status of the ITER neutral beam injection system (invited) [J].
Hemsworth, R. S. ;
Tanga, A. ;
Antoni, V. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (02)
[8]   Sheath structure in negative ion sources for fusion (invited) [J].
McAdams, R. ;
King, D. B. ;
Holmes, A. J. T. ;
Surrey, E. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (02)
[9]   Modeling of negative ion transport in a plasma source (invited) [J].
Riz, D ;
Pamela, J .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1998, 69 (02) :914-919
[10]   Negative surface ionization of hydrogen atoms and molecules [J].
Seidl, W ;
Cui, HL ;
Isenberg, JD ;
Kwon, HJ ;
Lee, BS ;
Melnychuk, ST .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (06) :2896-2901