Threshold for shock formation in the hyperbolic Keller-Segel model

被引:7
作者
Lee, Yongki [1 ]
Liu, Hailiang [2 ]
机构
[1] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
[2] Iowa State Univ, Dept Math, Ames, IA 50010 USA
基金
美国国家科学基金会;
关键词
Non local conservation law; Keller-Segel model; Shock formation; Critical threshold; Traffic flow; TRAFFIC FLOW; CHEMOTAXIS;
D O I
10.1016/j.aml.2015.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We identify a sub-threshold for finite time shock formation in solutions to the onedimensional hyperbolic Keller-Segel model. The main result states that under some assumptions on the initial potential, if the slope of the initial density is above a threshold at even one location, the solution must become discontinuous in finite time. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:56 / 63
页数:8
相关论文
共 27 条
  • [1] [Anonymous], SIAM J MATH ANAL
  • [2] [Anonymous], 2007, LN SERIES FRONTIERS
  • [3] [Anonymous], T FRADAY SOC
  • [4] [Anonymous], SYMMETRY PERTURBATIO
  • [5] On nonlocal conservation laws modelling sedimentation
    Betancourt, F.
    Buerger, R.
    Karlsen, K. H.
    Tory, E. M.
    [J]. NONLINEARITY, 2011, 24 (03) : 855 - 885
  • [6] Burger M, 2008, COMMUN MATH SCI, V6, P1
  • [7] The Keller-Segel model for chemotaxis with prevention of overcrowding: Linear vs. nonlinear diffusion
    Burger, Martin
    Di Francesco, Marco
    Dolak-Struss, Yasmin
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (04) : 1288 - 1315
  • [8] Dolak Y, 2005, SIAM J APPL MATH, V66, P286, DOI 10.1137/040612841
  • [9] Critical thresholds in Euler-Poisson equations
    Engelberg, S
    Liu, HL
    Tadmor, E
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 : 109 - 157