On an integrable two-component Camassa-Holm shallow water system

被引:393
作者
Constantin, Adrian [1 ,2 ]
Ivanov, Rossen I. [1 ,3 ]
机构
[1] Lund Univ, Dept Math, S-22100 Lund, Sweden
[2] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[3] Dublin Inst Technol, Sch Math Sci, Dublin 8, Ireland
关键词
D O I
10.1016/j.physleta.2008.10.050
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The interest in the Camassa-Holm equation inspired the search for various generalizations of this equation With interesting properties and applications. In this Letter we deal with such a two-component integrable system Of Coupled equations. First we derive the system in the context of shallow water theory. Then we show that while small initial data develop into global Solutions, for some initial data wave breaking Occurs. We also discuss the Solitary Wave Solutions. Finally, we present all explicit construction for the peakon Solutions in the short wave limit of system. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:7129 / 7132
页数:4
相关论文
共 38 条
[1]   On a Negative Flow of the AKNS Hierarchy and Its Relation to a Two-Component Camassa-Holm Equation [J].
Aratyn, Henrik ;
Gomes, Jose Francisco ;
Zimerman, Abraham H. .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2006, 2
[2]  
Beals R., 2001, Appl. Anal, V78, P255, DOI DOI 10.1080/00036810108840938
[3]  
BEALS R, 1999, INVERSE PROBL, V15, pLU
[4]   On second grade fluids with vanishing viscosity [J].
Busuioc, V .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (12) :1241-1246
[5]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[6]   A two-component generalization of the Camassa-Holm equation and its solutions [J].
Chen, M ;
Liu, SQ ;
Zhang, YJ .
LETTERS IN MATHEMATICAL PHYSICS, 2006, 75 (01) :1-15
[7]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[8]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243
[9]   Stability of the Camassa-Holm solitons [J].
Constantin, A ;
Strauss, WA .
JOURNAL OF NONLINEAR SCIENCE, 2002, 12 (04) :415-422
[10]   Existence of permanent and breaking waves for a shallow water equation: A geometric approach [J].
Constantin, A .
ANNALES DE L INSTITUT FOURIER, 2000, 50 (02) :321-+