EMBEDDING OF THE FREE ABELIAN TOPOLOGICAL GROUP A (X ⊕ X ) INTO A (X)

被引:2
作者
Krupski, Mikolaj [1 ,2 ]
Leiderman, Arkady [3 ]
Morris, Sidney [4 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Univ Warsaw, Inst Math, Ul Banacha 2, PL-02097 Warsaw, Poland
[3] Ben Gurion Univ Negev, Dept Math, POB 653, Beer Sheva, Israel
[4] Federat Univ Australia, Sch Sci Engn & Informat Technol, POB 663, Ballarat, Vic 3353, Australia
关键词
EQUIVALENT; SPACES;
D O I
10.1112/S0025579319000123
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following question: for which metrizable separable spaces X does the free abelian topological group A (X circle plus X) isomorphically embed into A (X). While for many natural spaces X such an embedding exists, our main result shows that if X is a Cook continuum or X is a rigid Bernstein set, then A(X circle plus X) does not embed into A(X) as a topological subgroup. The analogous statement is true for the free boolean group B (X).
引用
收藏
页码:708 / 718
页数:11
相关论文
共 32 条
[1]  
[Anonymous], SOVIET MATH DOKL
[2]  
[Anonymous], 1967, Fund. Math
[3]  
Arhangel'skii AV, 2008, ATLANTIS SERIES MATH
[4]  
Arkhangel'skii A. V., 1969, TOPOLOGICAL SPACES C
[5]  
ARKHANGELSKII AV, 1990, OPEN PROBLEMS TOPOLO, P601
[6]  
Baars J., 1992, Comment. Math. Univ. Carol, V33, P125
[7]   RETRACTS OF PSEUDO-ARC [J].
CORNETTE, JL .
COLLOQUIUM MATHEMATICUM, 1968, 19 (02) :235-&
[8]   Spaces l-dominated by I or R [J].
Gartside, Paul ;
Feng, Ziqin .
TOPOLOGY AND ITS APPLICATIONS, 2017, 219 :1-8
[9]  
Gorak R., 2019, FUND MATH
[10]  
Graev M. I., 1962, Amer. Math. Soc. Transl., V12, P305