Predicting Drug-Target Interactions Binding Affinity by Using Dual Updating Multi-task Learning

被引:0
|
作者
Shi, Chengyu [1 ]
Lin, Shaofu [1 ]
Chen, Jianhui [1 ]
Wang, Mengzhen [1 ]
Gao, Qingcai [1 ]
机构
[1] Beijing Univ Technol, Beijing 100020, Peoples R China
关键词
Drug target interaction prediction; Multi-task learning; Pre-training; Graph embedding;
D O I
10.1007/978-981-19-4549-6_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The prediction of drug-target interactions binding affinity has received great attention in the field of drug discovery. The prediction models based on deep neural networks have shown the favorable performance. However, existing models mainly depend on large-scale labelled data and are unfit for the innovative drug discovery study because of local optimum on pre-training. This paper proposes a new deep learning model to predict the drug-target interaction binding affinity. By using multi-task learning, unsupervised pre-training tasks of drugs and proteins are combined with the drug-target prediction task for preventing local optimum on pre-training. And then the MAML based updating strategy is adopted to deal with the task gap problem in the traditional fine-tuning process. Experimental results show that the proposed model is superior to the existing methods on predicting the affinity between new drugs and new targets.
引用
收藏
页码:66 / 76
页数:11
相关论文
共 50 条
  • [41] Linking drug target and pathway activation for effective therapy using multi-task learning
    Yang, Mi
    Simm, Jaak
    Lam, Chi Chung
    Zakeri, Pooya
    van Westen, Gerard J. P.
    Moreau, Yves
    Saez-Rodriguez, Julio
    SCIENTIFIC REPORTS, 2018, 8
  • [42] A review of machine learning-based methods for predicting drug-target interactions
    Shi, Wen
    Yang, Hong
    Xie, Linhai
    Yin, Xiao-Xia
    Zhang, Yanchun
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2024, 12 (01)
  • [43] Drug-target binding affinity prediction using message passing neural network and self supervised learning
    Leiming Xia
    Lei Xu
    Shourun Pan
    Dongjiang Niu
    Beiyi Zhang
    Zhen Li
    BMC Genomics, 24
  • [44] Predicting Drug-Target Interactions with Deep-Embedding Learning of Graphs and Sequences
    Chen, Wei
    Chen, Guanxing
    Zhao, Lu
    Chen, Calvin Yu-Chian
    JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 125 (25): : 5633 - 5642
  • [45] MMD-DTA: A Multi-Modal Deep Learning Framework for Drug-Target Binding Affinity and Binding Region Prediction
    Zhang, Qi
    Wei, Yuxiao
    Liao, Bo
    Liu, Liwei
    Zhang, Shengli
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (06) : 2200 - 2211
  • [46] Predicting drug-target interactions by dual-network integrated logistic matrix factorization
    Ming Hao
    Stephen H. Bryant
    Yanli Wang
    Scientific Reports, 7
  • [47] Drug-target continuous binding affinity prediction using multiple sources of information
    Tanoori, Betsabeh
    Jahromi, Mansoor Zolghadri
    Mansoori, Eghbal G.
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 186
  • [48] Drug-target continuous binding affinity prediction using multiple sources of information
    Tanoori, Betsabeh
    Jahromi, Mansoor Zolghadri
    Mansoori, Eghbal G.
    Expert Systems with Applications, 2021, 186
  • [49] Predicting drug-target interactions by dual-network integrated logistic matrix factorization
    Hao, Ming
    Bryant, Stephen
    Wang, Yanli
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [50] Predicting anticancer synergistic drug combinations based on multi-task learning
    Chen, Danyi
    Wang, Xiaowen
    Zhu, Hongming
    Jiang, Yizhi
    Li, Yulong
    Liu, Qi
    Liu, Qin
    BMC BIOINFORMATICS, 2023, 24 (01)