Context Aware 3D UNet for Brain Tumor Segmentation

被引:17
作者
Ahmad, Parvez [1 ]
Qamar, Saqib [2 ]
Shen, Linlin [2 ]
Saeed, Adnan [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Serv Comp Technol & Syst Lab, Cluster & Grid Comp Lab,Natl Engn Res Ctr Big Dat, Wuhan 430074, Peoples R China
[2] Shenzhen Univ, Comp Vision Inst, Sch Comp Sci & Software Engn, Shenzhen, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Hydropower & Informat Technol, Wuhan 430074, Peoples R China
来源
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I | 2021年 / 12658卷
基金
中国国家自然科学基金;
关键词
CNN; UNet; Contexual information; Dense connections; Residual inception blocks; Brain tumor segmentation;
D O I
10.1007/978-3-030-72084-1_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep convolutional neural network (CNN) achieves remarkable performance for medical image analysis. UNet is the primary source in the performance of 3D CNN architectures for medical imaging tasks, including brain tumor segmentation. The skip connection in the UNet architecture concatenates features from both encoder and decoder paths to extract multi-contextual information from image data. The multiscaled features play an essential role in brain tumor segmentation. However, the limited use of features can degrade the performance of the UNet approach for segmentation. In this paper, we propose a modified UNet architecture for brain tumor segmentation. In the proposed architecture, we used densely connected blocks in both encoder and decoder paths to extract multi-contextual information from the concept of feature reusability. In addition, residual-inception blocks (RIB) are used to extract the local and global information by merging features of different kernel sizes. We validate the proposed architecture on the multi-modal brain tumor segmentation challenge (BRATS) 2020 testing dataset. The dice (DSC) scores of the whole tumor (WT), tumor core (TC), and enhancing tumor (ET) are 89.12%, 84.74%, and 79.12%, respectively.
引用
收藏
页码:207 / 218
页数:12
相关论文
共 26 条
  • [1] Hybrid Labels for Brain Tumor Segmentation
    Ahmad, Parvez
    Qamar, Saqib
    Hashemi, Seyed Raein
    Shen, Linlin
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 158 - 166
  • [2] Bakas S., 2017, The Cancer Imaging Archive, P286, DOI DOI 10.7937/K9/TCIA.2017.KLXWJJ1Q
  • [3] Bakas S, 2019, Arxiv, DOI arXiv:1811.02629
  • [4] Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features
    Bakas, Spyridon
    Akbari, Hamed
    Sotiras, Aristeidis
    Bilello, Michel
    Rozycki, Martin
    Kirby, Justin S.
    Freymann, John B.
    Farahani, Keyvan
    Davatzikos, Christos
    [J]. SCIENTIFIC DATA, 2017, 4
  • [5] DRINet for Medical Image Segmentation
    Chen, Liang
    Bentley, Paul
    Mori, Kensaku
    Misawa, Kazunari
    Fujiwara, Michitaka
    Rueckert, Daniel
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) : 2453 - 2462
  • [6] Chen LC, 2017, Arxiv, DOI arXiv:1706.05587
  • [7] Dolz J, 2019, Arxiv, DOI arXiv:1804.02967
  • [8] Dong J., 2020, LNCS, V12347, P210, DOI 10. 1007/978-3- 030- 58536-5 13
  • [9] Brain Tumor Segmentation Using an Ensemble of 3D U-Nets and Overall Survival Prediction Using Radiomic Features
    Feng, Xue
    Tustison, Nicholas J.
    Meyer, Craig H.
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 279 - 288
  • [10] He KM, 2015, Arxiv, DOI [arXiv:1512.03385, DOI 10.48550/ARXIV.1512.03385]