Operator monotone functions, Jacobi operators and orthogonal polynomials

被引:2
作者
Uchiyama, Mitsuru [1 ]
机构
[1] Shimane Univ, Dept Math, Matsue, Shimane, Japan
关键词
Orthogonal polynomials; Lowner theorem; Jacobi operator; Pick function; Nevanlinna function; INEQUALITIES; MAJORIZATION; MATRICES; INVERSE;
D O I
10.1016/j.jmaa.2012.12.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We reveal a connection between operator monotone functions and orthogonal polynomials. Especially, we express an operator monotone function with a Jacobi operator, and show that it is a limit of rational operator monotone functions. Further we prove that the 'principal inverse' of an orthogonal polynomial is operator monotone and hence it has a holomorphic extension to the open upper half plane, namely a Pick function (or Nevanlinna function). (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:501 / 509
页数:9
相关论文
共 18 条
[1]  
[Anonymous], ACTA SCI MATH SZEGED
[2]   Infinitely divisible matrices [J].
Bhatia, R .
AMERICAN MATHEMATICAL MONTHLY, 2006, 113 (03) :221-235
[3]  
Bhatia R., 1996, MATRIX ANAL
[4]   Mean matrices and infinite divisibility [J].
Bhatia, Rajendra ;
Kosaki, Hideki .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 424 (01) :36-54
[5]  
Deift PA., 1998, ORTHOGONAL POLYNOMIA
[6]  
Donoghue W.F., 1974, Die Grundlehren der mathematischen Wissenschaften, V207
[7]   ON ANALYTIC CONTINUATION TO A SCHLICHT FUNCTION [J].
FITZGERALD, CH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 18 (05) :788-+
[8]   JENSEN INEQUALITY FOR OPERATORS AND LOWNER THEOREM [J].
HANSEN, F ;
PEDERSEN, GK .
MATHEMATISCHE ANNALEN, 1982, 258 (03) :229-241
[9]  
Horn R.A., 2012, Matrix Analysis
[10]   ON BOUNDARY VALUES OF A SCHLICHT MAPPING [J].
HORN, RA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 18 (05) :782-&