Near-wall turbulent fluctuations in the absence of wide outer motions

被引:92
作者
Hwang, Yongyun [1 ]
机构
[1] Ecole Polytech, CNRS, Lab Hydrodynam LadHyX, F-91128 Palaiseau, France
关键词
turbulence simulation; turbulent boundary layers; turbulent flows; EXACT COHERENT STRUCTURES; LOW-REYNOLDS-NUMBER; SHEAR-STRESS FLUCTUATIONS; LARGE-SCALE STRUCTURES; PLANE COUETTE-FLOW; BOUNDARY-LAYERS; CHANNEL FLOW; ENERGY AMPLIFICATION; DRAG-REDUCTION; LOGARITHMIC REGION;
D O I
10.1017/jfm.2013.133
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Numerical experiments that remove turbulent motions wider than lambda(+)(z) similar or equal to 100 are carried out up to Re-tau = 660 in a turbulent channel. The artificial removal of the wide outer turbulence is conducted with spanwise minimal computational domains and an explicit filter that effectively removes spanwise uniform eddies. The mean velocity profile of the remaining motions shows very good agreement with that of the full simulation below y(+) similar or equal to 40, and the near-wall peaks of the streamwise velocity fluctuation scale very well in the inner units and remain almost constant at all the Reynolds numbers considered. The self-sustaining motions narrower than lambda(+)(z) similar or equal to 100 generate smaller turbulent skin friction than full turbulent motions, and their contribution to turbulent skin friction gradually decays with the Reynolds number. This finding suggests that the role of the removed outer structures becomes increasingly important with the Reynolds number; thus one should aim to control the large scales for turbulent drag reduction at high Reynolds numbers. In the near-wall region, the streamwise and spanwise velocity fluctuations of the motions of lambda(+)(z) <= 100 reveal significant lack of energy at long streamwise lengths compared to those of the full simulation. In contrast, the losses of the wall-normal velocity and the Reynolds stress are not as large as those of these two variables. This implies that the streamwise and spanwise velocities of the removed motions penetrate deep into the near-wall region, while the wall-normal velocity and the Reynolds stress do not.
引用
收藏
页码:264 / 288
页数:25
相关论文
共 68 条
[1]   Very large-scale structures and their effects on the wall shear-stress fluctuations in a turbulent channel flow up to Reτ=640 [J].
Abe, H ;
Kawamura, H ;
Choi, H .
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2004, 126 (05) :835-843
[2]   Hairpin vortex organization in wall turbulence [J].
Adrian, Ronald J. .
PHYSICS OF FLUIDS, 2007, 19 (04)
[3]   OPTIMAL PERTURBATIONS AND STREAK SPACING IN WALL-BOUNDED TURBULENT SHEAR-FLOW [J].
BUTLER, KM ;
FARRELL, BF .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (03) :774-777
[4]   Viscous effects in control of near-wall turbulence [J].
Chang, Y ;
Collis, SS ;
Ramakrishnan, S .
PHYSICS OF FLUIDS, 2002, 14 (11) :4069-4080
[5]   ACTIVE TURBULENCE CONTROL FOR DRAG REDUCTION IN WALL-BOUNDED FLOWS [J].
CHOI, H ;
MOIN, P ;
KIM, J .
JOURNAL OF FLUID MECHANICS, 1994, 262 :75-110
[6]   Optimal transient growth and very large-scale structures in turbulent boundary layers [J].
Cossu, Carlo ;
Pujals, Gregory ;
Depardon, Sebastien .
JOURNAL OF FLUID MECHANICS, 2009, 619 :79-94
[7]   REYNOLDS-NUMBER DEPENDENCE OF SKIN FRICTION AND OTHER BULK FLOW VARIABLES IN 2-DIMENSIONAL RECTANGULAR DUCT FLOW [J].
DEAN, RB .
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 1978, 100 (02) :215-223
[8]   Reynolds-number scaling of the flat-plate turbulent boundary layer [J].
DeGraaff, DB ;
Eaton, JK .
JOURNAL OF FLUID MECHANICS, 2000, 422 :319-346
[9]   Scaling of the energy spectra of turbulent channels [J].
Del Alamo, JC ;
Jiménez, J ;
Zandonade, P ;
Moser, RD .
JOURNAL OF FLUID MECHANICS, 2004, 500 :135-144
[10]   Spectra of the very large anisotropic scales in turbulent channels [J].
del Alamo, JC ;
Jiménez, J .
PHYSICS OF FLUIDS, 2003, 15 (06) :L41-L44