Observation of a Dynamical Quantum Phase Transition by a Superconducting Qubit Simulation

被引:107
作者
Guo, Xue-Yi [1 ,2 ]
Yang, Chao [1 ,2 ]
Zeng, Yu [1 ,2 ]
Peng, Yi [1 ,2 ]
Li, He-Kang [1 ,2 ]
Deng, Hui [3 ]
Jin, Yi-Rong [1 ,4 ]
Chen, Shu [1 ,2 ]
Zheng, Dongning [1 ,2 ,4 ,5 ]
Fan, Heng [1 ,2 ,4 ,5 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] UCAS, Sch Phys Sci, Beijing 100190, Peoples R China
[3] USTC, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
[4] UCAS, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
[5] Songshan Lake Mat Lab, Dongguan 523808, Peoples R China
基金
中国国家自然科学基金;
关键词
MANY-BODY LOCALIZATION;
D O I
10.1103/PhysRevApplied.11.044080
中图分类号
O59 [应用物理学];
学科分类号
摘要
A dynamical quantum phase transition can occur during time evolution of sudden quenched quantum systems across a phase transition. It corresponds to the nonanalytic behavior at a critical time of the rate function of the quantum-state return amplitude, analogous to nonanalyticity of the free-energy density at the critical temperature in macroscopic systems. A variety of many-body systems can be represented in momentum space as a spin-1/2 state evolving on the Bloch sphere, where each momentum mode is decoupled and thus can be simulated independently by a single qubit. Here, we report the observation of a dynamical quantum phase transition in a superconducting qubit simulation of the quantum-quench dynamics of many-body systems. We take the Ising model with a transverse field as an example for demonstration. In our experiment, the spin state, which is initially polarized longitudinally, evolves based on a Hamiltonian with adjustable parameters depending on the momentum and strength of the transverse magnetic field. The time-evolving quantum state is read out by state tomography. Evidence of dynamical quantum phase transitions, such as paths of time-evolution states on the Bloch sphere, nonanalytic behavior of the dynamical free energy, and the emergence of Skyrmion lattice in momentum-time space, is observed. The experimental data agrees well with theoretical and numerical calculations. The experiment demonstrates explicitly the topological invariant, both topologically trivial and nontrivial, for dynamical quantum phase transitions. Our results show that the quantum phase transitions of this class of many-body system can be simulated successfully with a single qubit by varying certain control parameters over the corresponding momentum range.
引用
收藏
页数:12
相关论文
共 50 条
[1]   Localization-delocalization transition in the dynamics of dipolar-coupled nuclear spins [J].
Alvarez, Gonzalo A. ;
Suter, Dieter ;
Kaiser, Robin .
SCIENCE, 2015, 349 (6250) :846-848
[2]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[3]   Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Sank, D. ;
Jeffrey, E. ;
Chen, Y. ;
Yin, Y. ;
Chiaro, B. ;
Mutus, J. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Wenner, J. ;
White, T. C. ;
Cleland, A. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2013, 111 (08)
[4]   STATISTICAL MECHANICS OF XY-MODEL .2. SPIN-CORRELATION FUNCTIONS [J].
BAROUCH, E ;
MCCOY, BM .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 3 (02) :786-+
[5]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[6]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[7]   Dynamical topological order parameters far from equilibrium [J].
Budich, Jan Carl ;
Heyl, Markus .
PHYSICAL REVIEW B, 2016, 93 (08)
[8]   First-Order Dynamical Phase Transitions [J].
Canovi, Elena ;
Werner, Philipp ;
Eckstein, Martin .
PHYSICAL REVIEW LETTERS, 2014, 113 (26)
[9]   QUANTUM SIMULATION Exploring the many-body localization transition in two dimensions [J].
Choi, Jae-yoon ;
Hild, Sebastian ;
Zeiher, Johannes ;
Schauss, Peter ;
Rubio-Abadal, Antonio ;
Yefsah, Tarik ;
Khemani, Vedika ;
Huse, David A. ;
Bloch, Immanuel ;
Gross, Christian .
SCIENCE, 2016, 352 (6293) :1547-1552
[10]   Observation of discrete time-crystalline order in a disordered dipolar many-body system [J].
Choi, Soonwon ;
Choi, Joonhee ;
Landig, Renate ;
Kucsko, Georg ;
Zhou, Hengyun ;
Isoya, Junichi ;
Jelezko, Fedor ;
Onoda, Shinobu ;
Sumiya, Hitoshi ;
Khemani, Vedika ;
von Keyserlingk, Curt ;
Yao, Norman Y. ;
Demler, Eugene ;
Lukin, Mikhail D. .
NATURE, 2017, 543 (7644) :221-+