ZASSENHAUS RINGS AS IDEALIZATION OF MODULES

被引:3
作者
Dugas, Manfred [1 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
关键词
Idealization of modules; trivial extensions; Zassenhaus rings and modules;
D O I
10.1216/JCA-2010-2-2-139
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A ring R is called a Zassenhaus ring if any homomorphism phi of the additive group of R that leaves all left ideals of R invariant, is a left multiplication by some element a of R, i.e., phi(x) = ax for all x epsilon R. Let M be an R-R-bimodule. Then the direct sum R circle plus M turns naturally into a ring R(+)M by defining M M = {0}. This ring is called the idealization of the module M, which is an ideal of R(+)M. We will investigate conditions under which R(+)M is a Zassenhaus ring.
引用
收藏
页码:139 / 158
页数:20
相关论文
共 11 条
[1]   IDEALIZATION OF A MODULE [J].
Anderson, D. D. ;
Winders, Michael .
JOURNAL OF COMMUTATIVE ALGEBRA, 2009, 1 (01) :3-56
[2]  
Buckner J., ROCKY MOUNT IN PRESS
[3]  
Buckner J., HOUSTON J M IN PRESS
[4]   Rings with Zassenhaus families of ideals [J].
Buckner, Joshua ;
Dugas, Manfred .
COMMUNICATIONS IN ALGEBRA, 2008, 36 (06) :2133-2142
[5]   Quasi-localizations of Z [J].
Buckner, Joshua ;
Dugas, Manfred .
ISRAEL JOURNAL OF MATHEMATICS, 2007, 160 (01) :349-370
[6]   Left rigid rings [J].
Buckner, Joshua ;
Dugas, Manfred .
JOURNAL OF ALGEBRA, 2007, 309 (01) :192-206
[7]   LARGE E-MODULES EXIST [J].
DUGAS, M .
JOURNAL OF ALGEBRA, 1991, 142 (02) :405-413
[8]  
Dugas M, 2007, FUND MATH, V194, P239, DOI 10.4064/fm194-3-2
[9]   TORSION-FREE E-MODULES [J].
MADER, A ;
VINSONHALER, C .
JOURNAL OF ALGEBRA, 1988, 115 (02) :401-411
[10]  
Nagata M., 1962, INTERSCIENCE TRACTS, V13