SYMMETRY-BREAKING BIFURCATION IN NONLINEAR SCHRODINGER/GROSS-PITAEVSKII EQUATIONS

被引:60
作者
Kirr, E. W. [1 ]
Kevrekidis, P. G. [2 ]
Shlizerman, E. [3 ]
Weinstein, M. I. [4 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[3] Weizmann Inst Sci, Dept Appl Math & Comp Sci, IL-76100 Rehovot, Israel
[4] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
nonlinear Schrodinger; Gross-Pitaevskii; soliton; bound state;
D O I
10.1137/060678427
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of nonlinear Schrodinger/Gross-Pitaeveskii (NLS-GP) equations, i.e., NLS with a linear potential. NLS-GP plays an important role in the mathematical modeling of nonlinear optical as well as macroscopic quantum phenomena (BEC). We obtain conditions for a symmetry-breaking bifurcation in a symmetric family of states as N, the squared L-2 norm (particle number, optical power), is increased. The bifurcating asymmetric state is a "mixed mode" which, near the bifurcation point, is approximately a superposition of symmetric and antisymmetric modes. In the special case where the linear potential is a double well with well-separation L, we estimate N-cr(L), the symmetry breaking threshold. Along the "lowest energy" symmetric branch, there is an exchange of stability from the symmetric to the asymmetric branch as N is increased beyond Ncr.
引用
收藏
页码:566 / 604
页数:39
相关论文
共 35 条
[1]   Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction -: art. no. 010402 [J].
Albiez, M ;
Gati, R ;
Fölling, J ;
Hunsmann, S ;
Cristiani, M ;
Oberthaler, MK .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[2]   Wannier functions analysis of the nonlinear Schrodinger equation with a periodic potential [J].
Alfimov, GL ;
Kevrekidis, PG ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW E, 2002, 66 (04) :6
[3]   Symmetry breaking regime in the nonlinear Hartree equation [J].
Aschbacher, WH ;
Fröhlich, J ;
Graf, GM ;
Schnee, K ;
Troyer, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (08) :3879-3891
[4]   Symmetry-breaking instability of multimode vector solitons [J].
Cambournac, C ;
Sylvestre, T ;
Maillotte, H ;
Vanderlinden, B ;
Kockaert, P ;
Emplit, P ;
Haelterman, M .
PHYSICAL REVIEW LETTERS, 2002, 89 (08) :083901/1-083901/4
[5]   Spectra of positive and negative energies in the linearized NLS problem [J].
Cuccagna, S ;
Pelinovsky, D ;
Vougalter, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (01) :1-29
[6]   Singular instability of exact stationary solutions of the non-local Gross-Pitaevskii equation [J].
Deconinck, B ;
Kutz, JN .
PHYSICS LETTERS A, 2003, 319 (1-2) :97-103
[7]   Spatial photonics in nonlinear waveguide arrays [J].
Fleischer, JW ;
Bartal, G ;
Cohen, O ;
Schwartz, T ;
Manela, O ;
Freedman, B ;
Segev, M ;
Buljan, H ;
Efremidis, NK .
OPTICS EXPRESS, 2005, 13 (06) :1780-1796
[8]  
Golubitsky M., 1985, APPL MATH SCI, V51
[9]  
GRILLAKIS M, 1988, COMMUN PUR APPL MATH, V41, P745
[10]   STABILITY THEORY OF SOLITARY WAVES IN THE PRESENCE OF SYMMETRY .1. [J].
GRILLAKIS, M ;
SHATAH, J ;
STRAUSS, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 74 (01) :160-197