Genetic Diversity and Population Structure of Alnus cremastogyne as Revealed by Microsatellite Markers

被引:11
|
作者
Guo, Hong-Ying [1 ,2 ,3 ,4 ]
Wang, Ze-Liang [2 ,4 ]
Huang, Zhen [1 ,2 ,3 ,4 ]
Chen, Zhi [4 ]
Yang, Han-Bo [4 ]
Kang, Xiang-Yang [1 ,2 ,3 ,4 ]
机构
[1] Beijing Forestry Univ, Beijing Adv Innovat Ctr Tree Breeding Mol Design, Beijing 100083, Peoples R China
[2] Beijing Forestry Univ, Natl Engn Lab Tree Breeding, Beijing 100083, Peoples R China
[3] Beijing Forestry Univ, Beijing Lab Urban & Rural Ecol Environm, Beijing 100083, Peoples R China
[4] Sichuan Acad Forestry, Chengdu 610081, Sichuan, Peoples R China
关键词
Alnus cremastogyne; SSR; genetic diversity; population structure; genetic improvement; polyploid; MARITIMA SEASIDE ALDER; FLOW-CYTOMETRY; GLUTINOSA; GENOTYPE; INFERENCE; SOFTWARE; PROGRAM; NUMBER;
D O I
10.3390/f10030278
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Alnus cremastogyne Burk. is a nonleguminous, nitrogen-fixing tree species. It is also the most important endemic species of Alnus Mill. in China, possessing important ecological functions. This study investigated population genetic variation in A. cremastogyne using 175 trees sampled from 14 populations native to Sichuan Province with 25 simple sequence repeat (SSR) markers. Our analysis showed that A. cremastogyne has an average of 5.83 alleles, 3.37 effective alleles, an expected heterozygosity of 0.63, and an observed heterozygosity of 0.739, indicating a relatively high level of genetic diversity. The A. cremastogyne populations in Liangshan Prefecture (Meigu, Mianning) showed the highest level of genetic diversity, whereas the Yanting population had the lowest. Our analysis also showed that the average genetic differentiation of 14 A. cremastogyne populations was 0.021. Analysis of molecular variance (AMOVA) revealed that 97% of the variation existed within populations; only 3% was among populations. Unweighted pair-group method with arithmetic means (UPGMA) clustering and genetic structure analysis showed that the 14 A. cremastogyne populations could be clearly divided into three clusters: Liangshan Prefecture population, Ganzi Prefecture population, the other population in the mountain area around the Sichuan Basin and central Sichuan hill area, indicating some geographical distribution. Further analysis using the Mantel test showed that this geographical distribution was significantly correlated with elevation.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Genetic diversity and population structure of Zymoseptoria tritici in Ethiopia as revealed by microsatellite markers
    Mekonnen, Tilahun
    Haileselassie, Teklehaimanot
    Goodwin, Stephen B.
    Tesfayea, Kassahun
    FUNGAL GENETICS AND BIOLOGY, 2020, 141
  • [2] Genetic structure and diversity of Portunus trituberculatus in Chinese population revealed by microsatellite markers
    Guo, Enmian
    Cui, Zhaoxia
    Wu, Danhua
    Hui, Min
    Liu, Yuan
    Wang, Hongxia
    BIOCHEMICAL SYSTEMATICS AND ECOLOGY, 2013, 50 : 313 - 321
  • [3] Genetic diversity and population structure of Rhododendron simsii (Ericaceae) as revealed by microsatellite markers
    Wang, Shuzhen
    Jin, Zhengqiang
    Luo, Yanyan
    Li, Zhiliang
    Fang, Yuanping
    Xiang, Jun
    Jin, Weibin
    NORDIC JOURNAL OF BOTANY, 2019, 37 (04)
  • [4] Population structure and genetic diversity of Tamarix chinensis as revealed with microsatellite markers in two estuarine flats
    Jiang, Zhao -Yu
    Yang, Ao-Ao
    Zhang, Hai-Guang
    Wang, Wen-Bo
    Zhang, Ru-Hua
    PEERJ, 2023, 11
  • [5] Microsatellite markers of genetic diversity and population structure of Carica papaya
    Matos, E. L. S.
    Oliveira, E. J.
    Jesus, O. N.
    Dantas, J. L. L.
    ANNALS OF APPLIED BIOLOGY, 2013, 163 (02) : 298 - 310
  • [6] Patterns of genetic diversity and population structure of the threatened Houbara and Macqueen's bustards as revealed by microsatellite markers
    Korrida, A.
    Jadallah, S.
    Chbel, F.
    Amin-Alami, A.
    Ahra, M.
    Aggrey, S.
    GENETICS AND MOLECULAR RESEARCH, 2012, 11 (03): : 3207 - 3221
  • [7] Population structure and genetic diversity in wild dotted gizzard shad (Konosirus punctatus) revealed by microsatellite markers
    Liu, Bingjian
    Li, Jiasheng
    Zhang, Kun
    Peng, Ying
    Liu, Yifan
    Jin, Xun
    Zheng, Sixu
    Wang, Yunpeng
    Liu, Liqin
    Lu, Zhenming
    Zhang, Shufei
    Gong, Li
    FRONTIERS IN MARINE SCIENCE, 2022, 9
  • [8] Genetic diversity and population structure of wild Salvia miltiorrhiza in China revealed by microsatellite markers and implication for conservation
    Wang, Xiaoguo
    Yan, Dongfeng
    Quan, Jine
    Hu, Sanning
    Liang, Hongyan
    Yang, Xitian
    PLANT GENETIC RESOURCES-CHARACTERIZATION AND UTILIZATION, 2024, 22 (06): : 342 - 348
  • [9] Genetic diversity and population structure of alder, Alnus japonica using AFLP markers
    Huh, MK
    Lee, JK
    KOREAN JOURNAL OF GENETICS, 2004, 26 (03): : 317 - 325
  • [10] POPULATION GENETIC STRUCTURE OF FAGUS JAPONICA REVEALED BY NUCLEAR MICROSATELLITE MARKERS
    Hiraoka, Koichi
    Tomaru, Nobuhiro
    INTERNATIONAL JOURNAL OF PLANT SCIENCES, 2009, 170 (06) : 748 - 758