Thermal conductivity in porous silicon nanowire arrays

被引:57
作者
Weisse, Jeffrey M. [1 ]
Marconnet, Amy M. [1 ]
Kim, Dong Rip [1 ]
Rao, Pratap M. [1 ]
Panzer, Matthew A. [2 ]
Goodson, Kenneth E. [1 ]
Zheng, Xiaolin [1 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] KLA Tencor Corp, Milpitas, CA 95035 USA
来源
NANOSCALE RESEARCH LETTERS | 2012年 / 7卷
基金
美国国家科学基金会;
关键词
Thermal conductivity; Silicon nanowires; Porous silicon; Thermoreflectance; THERMOELECTRIC-MATERIALS; FABRICATION; TEMPERATURE; PERFORMANCE; FILMS; SI;
D O I
10.1186/1556-276X-7-554
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The nanoscale features in silicon nanowires (SiNWs) can suppress phonon propagation and strongly reduce their thermal conductivities compared to the bulk value. This work measures the thermal conductivity along the axial direction of SiNW arrays with varying nanowire diameters, doping concentrations, surface roughness, and internal porosities using nanosecond transient thermoreflectance. For SiNWs with diameters larger than the phonon mean free path, porosity substantially reduces the thermal conductivity, yielding thermal conductivities as low as 1 W/m/K in highly porous SiNWs. However, when the SiNW diameter is below the phonon mean free path, both the internal porosity and the diameter significantly contribute to phonon scattering and lead to reduced thermal conductivity of the SiNWs.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 30 条
[1]   Fabrication and characterization of a nanowire/polymer-based nanocomposite for a prototype thermoelectric device [J].
Abramson, AR ;
Kim, WC ;
Huxtable, ST ;
Yan, HQ ;
Wu, YY ;
Majumdar, A ;
Tien, CL ;
Yang, PD .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2004, 13 (03) :505-513
[2]   Pore-size dependence of the thermal conductivity of porous silicon: A phonon hydrodynamic approach [J].
Alvarez, F. X. ;
Jou, D. ;
Sellitto, A. .
APPLIED PHYSICS LETTERS, 2010, 97 (03)
[3]   Thermal conduction in doped single-crystal silicon films [J].
Asheghi, M ;
Kurabayashi, K ;
Kasnavi, R ;
Goodson, KE .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (08) :5079-5088
[4]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[5]   Biodegradable Porous Silicon Barcode Nanowires with Defined Geometry [J].
Chiappini, Ciro ;
Liu, Xuewu ;
Fakhoury, Jean Raymond ;
Ferrari, Mauro .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (14) :2231-2239
[6]   Temperature and structure size dependence of the thermal conductivity of porous silicon [J].
de Boor, J. ;
Kim, D. S. ;
Ao, X. ;
Hagen, D. ;
Cojocaru, A. ;
Foell, H. ;
Schmidt, V. .
EPL, 2011, 96 (01)
[7]   Light Trapping in Silicon Nanowire Solar Cells [J].
Garnett, Erik ;
Yang, Peidong .
NANO LETTERS, 2010, 10 (03) :1082-1087
[8]   Temperature-dependent thermal conductivity of porous silicon [J].
Gesele, G ;
Linsmeier, J ;
Drach, V ;
Fricke, J ;
ArensFischer, R .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1997, 30 (21) :2911-2916
[9]   Application of scanning thermal microscopy for thermal conductivity measurements on meso-porous silicon thin films [J].
Gomes, S. ;
David, L. ;
Lysenko, V. ;
Descamps, A. ;
Nychyporuk, T. ;
Raynaud, M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (21) :6677-6683
[10]   Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics [J].
Haynes, CL ;
Van Duyne, RP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (24) :5599-5611