An algebraic setting for belief functions

被引:0
作者
Walker, EA [1 ]
机构
[1] New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USA
来源
NAFIPS 2005 - 2005 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY | 2005年
关键词
allocations; belief functions; densities; incidence algebras; monotonicity;
D O I
10.1109/NAFIPS.2005.1548570
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We detail a specific algebraic setting for the study of functions from the set of subsets of a finite set into the real numbers, in particular for the study of belief functions.
引用
收藏
页码:407 / 411
页数:5
相关论文
共 9 条
[1]  
[Anonymous], 1993, ADV DEMPSTER SHAFER
[2]   SOME CHARACTERIZATIONS OF LOWER PROBABILITIES AND OTHER MONOTONE CAPACITIES THROUGH THE USE OF MOBIUS-INVERSION [J].
CHATEAUNEUF, A ;
JAFFRAY, JY .
MATHEMATICAL SOCIAL SCIENCES, 1989, 17 (03) :263-283
[3]   UPPER AND LOWER PROBABILITIES INDUCED BY A MULTIVALUED MAPPING [J].
DEMPSTER, AP .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (02) :325-&
[4]   Interaction transform of set functions over a finite set [J].
Denneberg, D ;
Grabisch, M .
INFORMATION SCIENCES, 1999, 121 (1-2) :149-170
[5]  
Meyerowitz A., 1994, INT J UNCERTAIN FUZZ, V2, P377
[6]  
Rota G.-C., 1964, Z WAHRSCH VERW GEBIE, V2, P340, DOI [DOI 10.1007/BF00531932, 10.1007/BF00531932]
[7]  
Shafer G., 1976, A mathematical theory of evidence, V76
[8]  
Shapley L., INT J GAME THEORY, V1, P11, DOI DOI 10.1007/BF01753431
[9]  
Spiegel E., 1997, Monographs and Textbooks in Pure and Applied Mathematics, V206