A novel AA10 from Paenibacillus curdlanolyticus and its synergistic action on crystalline and complex polysaccharides

被引:16
作者
Limsakul, Puangpen [1 ]
Phitsuwan, Paripok [1 ]
Waeonukul, Rattiya [2 ]
Pason, Patthra [2 ]
Tachaapaikoon, Chakrit [2 ]
Poomputsa, Kanokwan [1 ]
Kosugi, Akihiko [3 ]
Sakka, Makiko [4 ]
Sakka, Kazuo [4 ]
Ratanakhanokchai, Khanok [1 ]
机构
[1] King Mongkuts Univ Technol Thonburi, Sch Bioresources & Technol, Bangkok 10150, Thailand
[2] King Mongkuts Univ Technol Thonburi, Pilot Plant Dev & Training Inst, Bangkok 10150, Thailand
[3] Japan Int Res Ctr Agr Sci, Biol Resources & Postharvest Div, Tsukuba, Ibaraki 3058686, Japan
[4] Mie Univ, Grad Sch Bioresources, Tsu, Mie 5148507, Japan
关键词
Broad substrate specificity; Family 10 auxiliary activity of lytic polysaccharide monooxygenas; beta-1,4 Glycosidic linkage substrate; Lignocellulosic biomass; Non-catalytic domain; Paenibacillus curdlanolyticus; INTEGRATING PROTEIN CIPA; INTESTINAL MICROBIOTA; CELLO-OLIGOSACCHARIDE; ENDOGLUCANASE CELD; SUBSTRATE-BINDING; CELLULOSE; MONOOXYGENASE; HYDROLYSIS; FAMILY; XYLANASE;
D O I
10.1007/s00253-020-10758-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Lytic polysaccharide monooxygenases (LPMOs) play an important role in the degradation of complex polysaccharides in lignocellulosic biomass. In the present study, we characterized a modular LPMO (PcAA10A), consisting of a family 10 auxiliary activity of LPMO (AA10) catalytic domain, and non-catalytic domains including a family 5 carbohydrate-binding module, two fibronectin type-3 domains, and a family 3 carbohydrate-binding module from Paenibacillus curdlanolyticus B-6. which was expressed in a recombinant Escherichia coli. Comparison of activities between full-length PcAA10A and the catalytic domain polypeptide (PcAA10A_CD) indicates that the non-catalytic domains are important for the deconstruction of crystalline cellulose and complex polysaccharides contained in untreated lignocellulosic biomass. Interestingly, PcAA10A_CD acted not only on cellulose and chitin, but also on xylan, mannan, and xylan and cellulose contained in lignocellulosic biomass, which has not been reported for the AA10 family. Mutation of the key residues, Trp51 located at subsite -2 and Phe171 located at subsite +2, in the substrate-binding site of PcAA10A_CD revealed that these residues are substantially involved in broad substrate specificity toward cellulose, xylan, and mannan, albeit with a low effect toward chitin. Furthermore, PcAA10A bad a boosting effect on untreated corn hull degradation by P. curdlanolyticus B-6 endoxylanase Xyn10D and Clostridium thermocellum endo-glucanase Cel9A. These results suggest that PcAA10A is a unique LPMO capable of cleaving and enhancing lignocellulosic biomass degradation, making it a good candidate for biotechnological applications.
引用
收藏
页码:7533 / 7550
页数:18
相关论文
共 57 条
[1]   NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions [J].
Aachmann, Finn L. ;
Sorlie, Morten ;
Skjak-Braek, Gudmund ;
Eijsink, Vincent G. H. ;
Vaaje-Kolstad, Gustav .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (46) :18779-18784
[2]   A novel GH6 cellobiohydrolase from Paenibacillus curdlanolyticus B-6 and its synergistic action on cellulose degradation [J].
Baramee, Sirilak ;
Teeravivattanakit, Thitiporn ;
Phitsuwan, Paripok ;
Waeonukul, Rattiya ;
Pason, Patthra ;
Tachaapaikoon, Chakrit ;
Kosugi, Akihiko ;
Sakka, Kazuo ;
Ratanakhanokchai, Khanok .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2017, 101 (03) :1175-1188
[3]   Alkaline xylanolytic-cellulolytic multienzyme complex from the novel anaerobic alkalithermophilic bacterium Cellulosibacter alkalithermophilus and its hydrolysis of insoluble polysaccharides under neutral and alkaline conditions [J].
Baramee, Sirilak ;
Phitsuwan, Paripok ;
Waeonukul, Rattiya ;
Pason, Patthra ;
Tachaapaikoon, Chakrit ;
Kosugi, Akihiko ;
Ratanakhanokchai, Khanok .
PROCESS BIOCHEMISTRY, 2015, 50 (04) :643-650
[4]   Characterization of a novel Lytic Polysaccharide Monooxygenase from Malbranchea cinnamomea exhibiting dual catalytic behavior [J].
Basotra, Neha ;
Dhiman, Saurabh Sudha ;
Agrawal, Dhruv ;
Sani, Rajesh K. ;
Tsang, Adrian ;
Chadha, Bhupinder S. .
CARBOHYDRATE RESEARCH, 2019, 478 :46-53
[5]   Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina [J].
Bennati-Granier, Chloe ;
Garajova, Sona ;
Champion, Charlotte ;
Grisel, Sacha ;
Haon, Mireille ;
Zhou, Simeng ;
Fanuel, Mathieu ;
Ropartz, David ;
Rogniaux, Helene ;
Gimbert, Isabelle ;
Record, Eric ;
Berrin, Jean-Guy .
BIOTECHNOLOGY FOR BIOFUELS, 2015, 8
[6]   How a Lytic Polysaccharide Monooxygenase Binds Crystalline Chitin [J].
Bissaro, Bastien ;
Isaksen, Ingvild ;
Vaaje-Kolstad, Gustav ;
Eijsink, Vincent G. H. ;
Rohr, Asmund K. .
BIOCHEMISTRY, 2018, 57 (12) :1893-1906
[7]   Carbohydrate-binding modules: fine-tuning polysaccharide recognition [J].
Boraston, AB ;
Bolam, DN ;
Gilbert, HJ ;
Davies, GJ .
BIOCHEMICAL JOURNAL, 2004, 382 (03) :769-781
[8]   The development of cement and concrete additive [J].
Chun, Byong-Wa ;
Dair, Benita ;
Macuch, Patrick J. ;
Wiebe, Debbie ;
Porteneuve, Charlotte ;
Jeknavorian, Ara .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2006, 131 (1-3) :645-658
[9]   Dietary intake of xylooligosaccharides improves the intestinal microbiota, fecal moisture, and pH value in the elderly [J].
Chung, Yun-Chin ;
Hsu, Cheng-Kuang ;
Ko, Chih-Yuan ;
Chan, Yin-Ching .
NUTRITION RESEARCH, 2007, 27 (12) :756-761
[10]  
Couturier M, 2018, NAT CHEM BIOL, V14, P306, DOI [10.1038/nchembio.2558, 10.1038/NCHEMBIO.2558]